1
|
Shu L, Sha S, Zhang JH, Zhang S, Wang J, Ji X, Li S, Jiang M, Tang W, Liu Z. Narrowband Solar-Blind Photodetection of the Plasmonic (In 0.3Ga 0.7) 2O 3 Detector via the Synergetic Enhancement of Small-Sized Ag-Nanoparticle Photoabsorbance and Surface Modification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54178-54188. [PMID: 39342636 DOI: 10.1021/acsami.4c11333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Currently, research on Ag nanoparticles (AgNPs) predominantly focuses on UV/visible photodetection and UV emission, seemingly overlooking the significance of Ag in enhancing deep ultraviolet photon detection. In this work, (In0.3Ga0.7)2O3 thin films were fabricated by plasma-enhanced chemical vapor deposition. Due to the unique photoabsorbance characteristic and better interaction with photons of small-sized AgNPs, they effectively suppress the UVB absorbance caused by energy band engineering in the (In0.3Ga0.7)2O3 thin film while enhancing photoabsorbance in UVC due to the surface plasmon effect. Therefore, under the synergistic effect of enhanced photon absorbance and hot electron transfer, the performance of the detector is significantly improved, and its responsivity (R), external quantum efficiency, and detectivity (D*) are 193 mA/W, approximately 100%, and 1014 Jones, respectively, at a bias of -6 V. The fast response time and decay time are 634.6 and 194.1 ms, respectively; the rapid decay facilitated by AgNPs is attributed to the increased indirect recombination rate. AgNPs exhibit excellent narrowband response characteristics and absorbance properties in specific wavelength bands for the InGaO photodetector. This research lays the foundation for the practical application of localized surface plasmon resonance-enhanced photon-sensing capabilities.
Collapse
Affiliation(s)
- Lincong Shu
- Innovation Center of Gallium Oxide Semiconductor (IC-GAO), College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Shulin Sha
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, People's Republic of China
| | - Jia-Han Zhang
- Inner Mongolia Key Laboratory of Intelligent Communication and Sensing and Signal Processing, School of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Shaohui Zhang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, People's Republic of China
| | - Jinjin Wang
- School of Integrated Circuits, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Xueqiang Ji
- Innovation Center of Gallium Oxide Semiconductor (IC-GAO), College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Shan Li
- Innovation Center of Gallium Oxide Semiconductor (IC-GAO), College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Mingming Jiang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, People's Republic of China
| | - Weihua Tang
- Innovation Center of Gallium Oxide Semiconductor (IC-GAO), College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Zeng Liu
- Inner Mongolia Key Laboratory of Intelligent Communication and Sensing and Signal Processing, School of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
2
|
Yu Y, Xiong T, Zhou Z, Liu D, Liu YY, Yang J, Wei Z. Spectrum-Dependent Image Convolutional Processing via a Two-Dimensional Polarization-Sensitive Photodetector. NANO LETTERS 2024; 24:6788-6796. [PMID: 38781093 DOI: 10.1021/acs.nanolett.4c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Currently, the improvement in the processing capacity of traditional processors considerably lags behind the demands of real-time image processing caused by the advancement of photodetectors and the widespread deployment of high-definition image sensors. Therefore, achieving real-time image processing at the sensor level has become a prominent research domain in the field of photodetector technology. This goal underscores the need for photodetectors with enhanced multifunctional integration capabilities than can perform real-time computations using optical or electrical signals. In this study, we employ an innovative p-type semiconductor GaTe0.5Se0.5 to construct a polarization-sensitive wide-spectral photodetector. Leveraging the wide-spectral photoresponse, we realize three-band imaging within a wavelength range of 390-810 nm. Furthermore, real-time image convolutional processing is enabled by configuring appropriate convolution kernels based on the polarization-sensitive photocurrents. The innovative design of the polarization-sensitive wide-spectral GaTe0.5Se0.5-based photodetector represents a notable contribution to the domain of real-time image perception and processing.
Collapse
Affiliation(s)
- Yali Yu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Xiong
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziqi Zhou
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Duanyang Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Yue-Yang Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Hou X, Liu Y, Bai S, Yu S, Huang H, Yang K, Li C, Peng Z, Zhao X, Zhou X, Xu G, Long S. Pyroelectric Photoconductive Diode for Highly Sensitive and Fast DUV Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314249. [PMID: 38564779 DOI: 10.1002/adma.202314249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Detecting high-energy photons from the deep ultraviolet (DUV) to X-rays is vital in security, medicine, industry, and science. Wide bandgap (WBG) semiconductors exhibit great potential for detecting high-energy photons. However, the implementation of highly sensitive and high-speed detectors based on WBG semiconductors has been a huge challenge due to the inevitable deep level traps and the lack of appropriate device structure engineering. Here, a sensitive and fast pyroelectric photoconductive diode (PPD), which couples the interface pyroelectric effect with the photoconductive effect based on tailored polycrystal Ga-rich GaOx (PGR-GaOx) Schottky photodiode, is first proposed. The PPD device exhibits ultrahigh detection performance for DUV and X-ray light. The responsivity for DUV light and sensitivity for X-ray are up to 104 A W-1 and 105 µC Gyair -1 cm-2, respectively. Especially, the interface pyroelectric effect induced by polar symmetry in the depletion region of the PGR-GaOx can significantly improve the response speed of the device by 105 times. Furthermore, the potential of the device is demonstrated for imaging enhancement systems with low power consumption and high sensitivity. This work fully excavates the potential of the pyroelectric effect for detectors and provides a novel design strategy to achieve sensitive and high-speed detectors.
Collapse
Affiliation(s)
- Xiaohu Hou
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Liu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Shiyu Bai
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Shunjie Yu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Hong Huang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Kai Yang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Li
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Zhixin Peng
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaolong Zhao
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Xuanze Zhou
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Guangwei Xu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Shibing Long
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Zhao H, Zhang Y, Yao J. High performance CsBi 3I 10/PCBM bulk heterojunction perovskite photodetector. APPLIED OPTICS 2024; 63:1258-1264. [PMID: 38437305 DOI: 10.1364/ao.510980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024]
Abstract
Lead halide perovskites (LHPs) have been extensively studied due to their remarkable optoelectronic performance. However, the toxicity of a lead ion to humans and its instability under ambient conditions render lead-based halide perovskite an unsuitable material for commercialization. Meanwhile, lead-free halide perovskite (LFHP) devices generally exhibit poor performance. Therefore, enhancing photoelectric conversion capacity is the most important issue that needs to be addressed. Here, we propose a photodetector (PD) fabricated using C s B i 3 I 10/p h e n y l-C 61-butyric acid methyl ester (PCBM) bulk heterojunction as the active layer. The PD illuminated under 532 nm can reach a high responsivity (1.54 A/W) at -2V bias, while at 2 V bias, the PD reaches a higher responsivity (224.40 A/W). All of those results suggest that C s B i 3 I 10/P C B M bulk heterojunctions hold enormous potential in substituting for LHPs in optoelectronic devices.
Collapse
|
5
|
Du Y, Yin S, Li Y, Chen J, Shi D, Guo E, Zhang H, Wang Z, Qin Q, Zou C, Zhai T, Li L. Liquid-Metal-Assisted Synthesis of Patterned GaN Thin Films for High-Performance UV Photodetectors Array. SMALL METHODS 2024; 8:e2300175. [PMID: 37317014 DOI: 10.1002/smtd.202300175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/31/2023] [Indexed: 06/16/2023]
Abstract
GaN's outstanding physical characteristics allow for a wide range of applications in numerous industries. Although individual GaN-based ultraviolet (UV) photodetectors are the subject of in-depth research in recent decades, the demand for photodetectors array is rising as a result of advances in optoelectronic integration technology. However, as a prerequisite for constructing GaN-based photodetectors array, large-area, patterned synthesis of GaN thin films remains a certain challenge. This work presents a facile technique for pattern growing high-quality GaN thin films for the assembly of an array of high-performance UV photodetectors. This technique uses UV lithography, which is not only very compatible with common semiconductor manufacturing techniques, but also enables precise patterning modification. A typical detector has impressive photo-response performance under 365 nm irradiation, with an extremely low dark current of 40 pA, a high Ilight /Idark ratio over 105 , a high responsivity of 4.23 AW-1 , and a decent specific detectivity of 1.76 × 1012 Jones. Additional optoelectronic studies demonstrate the strong homogeneity and repeatability of the photodetectors array, enabling it to serve as a reliable UV image sensor with enough spatial resolution. These outcomes highlight the proposed patterning technique's enormous potential.
Collapse
Affiliation(s)
- Yuchen Du
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Shiqi Yin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Ying Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jiawang Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Dongfeng Shi
- Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037, P. R. China
| | - Erjuan Guo
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Hui Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zihan Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Qinggang Qin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, 230029, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Liang Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
6
|
Hu H, Zhen W, Yue Z, Niu R, Xu F, Zhu W, Jiao K, Long M, Xi C, Zhu W, Zhang C. A mixed-dimensional quasi-1D BiSeI nanowire-2D GaSe nanosheet p-n heterojunction for fast response optoelectronic devices. NANOSCALE ADVANCES 2023; 5:6210-6215. [PMID: 37941949 PMCID: PMC10629003 DOI: 10.1039/d3na00525a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Due to the unique combination configuration and the formation of a built-in electric field, mixed-dimensional heterojunctions present fruitful possibilities for improving the optoelectronic performances of low-dimensional optoelectronic devices. However, the response times of most photodetectors built from mixed-dimensional heterojunctions are within the millisecond range, limiting their applications in fast response optoelectronic devices. Herein, a mixed-dimensional BiSeI/GaSe van der Waals heterostructure is designed, which exhibits visible light detection ability and competitive photoresponsivity of 750 A W-1 and specific detectivity of 2.25 × 1012 Jones under 520 nm laser excitation. Excitingly, the device displays a very fast response time, e.g., the rise time and decay time under 520 nm laser excitation are 65 μs and 190 μs, respectively. Our findings provide a prospective approach to mixed-dimensional heterojunction photodetection devices with rapid switching capabilities.
Collapse
Affiliation(s)
- Huijie Hu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Weili Zhen
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Zhilai Yue
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Rui Niu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Feng Xu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Wanli Zhu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Keke Jiao
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Mingsheng Long
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Chuanying Xi
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Wenka Zhu
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Changjin Zhang
- High Magnetic Field Laboratory of Anhui Province, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 China
| |
Collapse
|
7
|
Wang K, Wang H, Chen C, Li W, Wang L, Hu F, Gao F, Yang W, Wang Z, Chen S. High-Performance Ultraviolet Photodetector Based on Single-Crystal Integrated Self-Supporting 4H-SiC Nanohole Arrays. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23457-23469. [PMID: 37148254 DOI: 10.1021/acsami.3c02540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Currently, the photodetectors (PDs) assembled by vertically aligned nanostructured arrays have attracted intensive interest owing to their unique virtues of low light reflectivity and rapid charge transport. However, in terms of the inherent limitations caused by numerous interfaces often existed within the assembled arrays, the photogenerated carriers cannot be effectively separated, thus weakening the performance of target PDs. Aiming at resolving this critical point, a high-performance ultraviolet (UV) PD with a single-crystal integrated self-supporting 4H-SiC nanohole arrays is constructed, which are prepared via the anode oxidation approach. As a result, the PD delivers an excellent performance with a high switching ratio (∼250), remarkable detectivity (6 × 1010 Jones), fast response (0.5 s/0.88 s), and excellent stability under 375 nm light illumination with a bias voltage of 5 V. Moreover, it has a high responsivity (824 mA/W), superior to those of most reported ones based on 4H-SiC. The overall high performance of the PDs could be mainly attributed to the synergistic effect of the SiC nanohole arrays' geometry, a whole single-crystal integrated self-supporting film without interfaces, established reliable Schottky contact, and incorporated N dopants.
Collapse
Affiliation(s)
- Kaitao Wang
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan City 030024, P. R. China
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P. R. China
| | - Hulin Wang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P. R. China
| | - Chunmei Chen
- College of Mechanical Engineering/Hangzhou Bay Automotive Engineering, Ningbo University of Technology, Ningbo 315336, P. R. China
| | - Weijun Li
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P. R. China
| | - Lin Wang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P. R. China
| | - Feng Hu
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P. R. China
| | - Fengmei Gao
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P. R. China
| | - Weiyou Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P. R. China
| | - Zhenxia Wang
- Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan City 030024, P. R. China
| | - Shanliang Chen
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo City 315211, P. R. China
| |
Collapse
|
8
|
Yu Y, Shen T, Long H, Zhong M, Xin K, Zhou Z, Wang X, Liu YY, Wakabayashi H, Liu L, Yang J, Wei Z, Deng HX. Doping Engineering in the MoS 2 /SnSe 2 Heterostructure toward High-Rejection-Ratio Solar-Blind UV Photodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206486. [PMID: 36047665 DOI: 10.1002/adma.202206486] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The intentionally designed band alignment of heterostructures and doping engineering are keys to implement device structure design and device performance optimization. According to the theoretical prediction of several typical materials among the transition metal dichalcogenides (TMDs) and group-IV metal chalcogenides, MoS2 and SnSe2 present the largest staggered band offset. The large band offset is conducive to the separation of photogenerated carriers, thus MoS2 /SnSe2 is a theoretically ideal candidate for fabricating photodetector, which is also verified in the experiment. Furthermore, in order to extend the photoresponse spectrum to solar-blind ultraviolet (SBUV), doping engineering is adopted to form an additional electron state, which provides an extra carrier transition channel. In this work, pure MoS2 /SnSe2 and doped MoS2 /SnSe2 heterostructures are both fabricated. In terms of the photoelectric performance evaluation, the rejection ratio R254 /R532 of the photodetector based on doped MoS2 /SnSe2 is five orders of magnitude higher than that of pure MoS2 /SnSe2 , while the response time is obviously optimized by 3 orders. The results demonstrate that the combination of band alignment and doping engineering provides a new pathway for constructing SBUV photodetectors.
Collapse
Affiliation(s)
- Yali Yu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Shen
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoran Long
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mianzeng Zhong
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Kaiyao Xin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziqi Zhou
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue-Yang Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Hitoshi Wakabayashi
- EE Department, School of Engineering, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Liyuan Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Xiong Deng
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|