1
|
Zhou X, Zhang H, Liu Y. Cyclodextrin supramolecular assembly confined luminescent materials. Chem Sci 2024:d4sc05698a. [PMID: 39464618 PMCID: PMC11499968 DOI: 10.1039/d4sc05698a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
The macrocyclic supramolecular assembly confinement effect not only induces or extends the fluorescence/phosphorescence luminescence behavior of guest molecules but has also been widely applied in the research fields of chemistry, biology, and materials. This review primarily describes recent advances in cyclodextrin (CD) supramolecular assembly confined luminescent materials. Taking advantage of their hydrophobic cavity, CDs and their derivatives effectively encapsulate guest molecules and special functional groups or further assemble and polymerize to restrict the motion of guest chromophores, inducing and enhancing the luminescence behavior and realizing intelligent stimulus-responsive luminescence depending on changes in temperature, light, redox reactions and solvent polarity, which are successfully applied in targeted cell imaging, sensing, information encryption, anti-counterfeiting and flexible electronic light-emitting devices. With the emergence of new chromophores and CD primitives, spatial confinement within CD supramolecular assemblies will further realize the rapid development of supramolecular science and technology in circularly polarized luminescence, fluorescence/phosphorescence cascade energy transfer, light-harvesting energy-transfer systems and long persistent luminescent materials.
Collapse
Affiliation(s)
- Xiaolu Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Hengzhi Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
2
|
Li S, Xie Y, Zhang B, Liu Y, Xu S, Wu H, Du R, Wang ZG. A Host-Guest Approach to Engineering Oxidase-Mimetic Assembly with Substrate Selectivity and Dynamic Catalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45319-45326. [PMID: 39145897 DOI: 10.1021/acsami.4c08030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The creation of synthetic materials that emulate the complexity of natural systems, such as enzymes, remains a challenge in biomimicry. Here, we present a simple yet effective strategy to introduce substrate selectivity and dynamic responsiveness into an enzyme-mimetic supramolecular material. We achieved this by anchoring γ-cyclodextrin to a fluorene-modified Lys/Cu2+ assembly, which mimics copper-dependent oxidase. The binding affinity among the components was examined using 1H NMR, isothermal titration calorimetry (ITC), and theoretical simulation. The γ-cyclodextrin acts as a host, forming a complex with the fluorenyl moiety and aromatic substrates of specific sizes. This ensures the proximity of the substrate reactive groups to the copper center, leading to size-selective enhancement of aromatic substrate oxidation, particularly favoring biphenyl substrates. Notably, α- and β-cyclodextrins do not exhibit this effect, and the native oxidase lacks this selectivity. Additionally, the binding affinity of the aromatic substrate to the catalyst can be dynamically tuned by adding α-cyclodextrin or by irradiating with different wavelengths in the presence of competitive azo-guests, resulting in switched oxidative activities. This approach offers a new avenue for designing biomimetic materials with tailorable active site structures and catalytic properties.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanyuan Xie
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoli Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruikai Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Zhang B, Zhong Q, Xie Y, Hu L, Wang Y, Bai G. A sodium carboxymethyl cellulose-induced emission and gelation system for time-dependent information encryption and anti-counterfeiting. J Colloid Interface Sci 2024; 663:707-715. [PMID: 38432169 DOI: 10.1016/j.jcis.2024.02.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Many lanthanide complexes do not form gel or even exhibit characteristic luminescence of lanthanide ions, which limits their applications in many fields. Therefore, there is an urgent need for a third component that can not only promote emission but also gel the lanthanide complex system to construct new smart materials such as time-dependent information encryption and anti-counterfeiting materials. Herein, a luminescent lanthanide metallogel was successfully prepared by using the third component sodium carboxymethyl cellulose (NaCMC) to induce the gelation and luminescence of the complex (H3L/Tb3+) of 4,4',4″-((benzene-1,3,5-tricarbonyl)tris(azanediyl)) tris(2-hydroxybenzoic acid) (H3L) and Tb3+. The H3L/Tb3+ complex itself does not form gel and has no characteristic luminescence of Tb3+. Moreover, the multicolor emission of H3L/Tb3+/NaCMC gels was prepared based on Förster resonance energy transfer (FRET) platforms to obtain a high-security level information encryption and anti-counterfeiting materials. These multicolor emission gels exhibit emission color tunability with time dependence due to the different energy transfer efficiencies at each pH node controlled by glucono-δ-lactone hydrolysis time. Based on the time response characteristics, the time-dependent information encryption and anti-counterfeiting materials are developed.
Collapse
Affiliation(s)
- Binbin Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China.
| | - Qilin Zhong
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Yuhang Xie
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Linfeng Hu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Yujie Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Guangyue Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
4
|
Cuan J, Zhou H, Huang X, Cong X, Zhou Y. Hydro-Photo-Thermo-Responsive Multicolor Luminescence Switching of a Ternary MOF Hybrid for Advanced Information Anticounterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305624. [PMID: 38095512 DOI: 10.1002/smll.202305624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/29/2023] [Indexed: 05/25/2024]
Abstract
Developing smart materials capable of solid-state multicolor photoluminescence (PL) switching in response to multistimuli is highly desirable for advanced anticounterfeiting. Here, a ternary MOF hybrid showing hydro-photo-thermo-responsive multicolor PL switching in the solid state is presented. This hybrid is constructed by co-immobilizing Eu3+ and methyl viologen (MV) cations within an anionic MOF via the cation-exchange approach. The confined guest cations are well arranged in the framework channels, facilitating the synergistic realization of stimuli-responsive multiple PL color-switching through intermolecular coupling. The hybrid undergoes a rapid and reversible PL color-switching from red to blue upon water simulation, which is achieved by activating the blue emission of the framework linker while simultaneously quenching the Eu3+ emission. Furthermore, the hybrid displays photo-thermo-responsive PL switching from red to dark. UV-light irradiation or heating triggers the chromic conversion of MV to its colored radical form, which exhibits perfect spectral overlap with Eu3+, thus activating Förster resonance energy transfer (FRET) from Eu3+ to MV radicals and quenching the Eu3+ emission. Inspired by these results, PL morse patterns are designed and fabricated using a novel triple-level encryption strategy, showcasing the exciting potential of this hybrid in advanced anticounterfeiting applications.
Collapse
Affiliation(s)
- Jing Cuan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hui Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xuefang Huang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xinhang Cong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - You Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
5
|
Zhong W, Shang L. Photoswitching the fluorescence of nanoparticles for advanced optical applications. Chem Sci 2024; 15:6218-6228. [PMID: 38699274 PMCID: PMC11062085 DOI: 10.1039/d4sc00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
The dynamic optical response properties and the distinct features of nanomaterials make photoswitchable fluorescent nanoparticles (PF NPs) attractive candidates for advanced optical applications. Over the past few decades, the design of PF NPs by coupling photochromic and fluorescent motifs at the nanoscale has been actively pursued, and substantial efforts have been made to exploit their potential applications. In this perspective, we critically summarize various design principles for fabricating these PF NPs. Then, we discuss their distinct optical properties from different aspects by highlighting the capability of NPs in fabricating new, robust photoswitch systems. Afterwards, we introduce the pivotal role of PF NPs in advanced optical applications, including sensing, anti-counterfeiting and imaging. Finally, current challenges and future development of PF NPs are briefly discussed.
Collapse
Affiliation(s)
- Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen Shenzhen 518057 China
- Chongqing Science and Technology Innovation Center of Northwestern Polytechnical University Chongqing 401135 China
| |
Collapse
|
6
|
Yan X, Xin Y, Yu Y, Li X, Li B, Elsabahy M, Zhang J, Ma F, Gao H. Remotely Controllable Supramolecular Nanomedicine for Drug-Resistant Colorectal Cancer Therapy Caused by Fusobacterium nucleatum. SMALL METHODS 2024; 8:e2301309. [PMID: 38018349 DOI: 10.1002/smtd.202301309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Fusobacterium nucleatum (Fn) existing in the community of colorectal cancer (CRC) promotes CRC progression and causes chemotherapy resistance. Despite great efforts that have been made to overcome Fn-induced chemotherapy resistance by co-delivering antibacterial agents and chemotherapeutic drugs, increasing the drug-loading capacity and enabling controlled release of drugs remain challenging. In this study, a novel supramolecular upconversion nanoparticle (SUNP) is constructed by incorporating a positively charged polymer (PAMAM-LA-CD) with Fn inhibition capacity, a negatively charged platinum (IV) oxaliplatin prodrug (OXA-COOH), upconversion nanoparticle (UCNPs) and polyethylene glycol-azobenzene (PEG-Azo) to enhance drug-loading and enable on-demand drug release for drug-resistant CRC treatment. SUNPs exhibit high drug-loading capacity (30.8%) and good structural stability under normal physiological conditions, while disassembled upon exogenous NIR excitation and endogenous azo reductase in the CRC microenvironment to trigger drug release. In vitro and in vivo studies demonstrate that SUNPs presented good biocompatibility and robust performance to overcome chemoresistance, thereby significantly inhibiting Fn-infected cancer cell proliferation. This study leverages multiple dynamic chemical designs to integrate both advantages of drug loading and release in a single system, which provides a promising candidate for precision therapy of bacterial-related drug-resistant cancers.
Collapse
Affiliation(s)
- Xiangjie Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
- Department of Materials Science and Engineering, Jinzhong University, Shanxi, 030619, China
| | - Youtao Xin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yunjian Yu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xiaohui Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Boqiong Li
- Department of Materials Science and Engineering, Jinzhong University, Shanxi, 030619, China
| | - Mahmoud Elsabahy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Feihe Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
7
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Zhou WL, Lin W, Chen Y, Dai XY, Liu Y. Tunable Multicolor Lanthanide Supramolecular Assemblies with White Light Emission Confined by Cucurbituril[7]. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304009. [PMID: 37442787 DOI: 10.1002/smll.202304009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Macrocyclic confinement-induced supramolecular luminescence materials have important application value in the fields of bio-sensing, cell imaging, and information anti-counterfeiting. Herein, a tunable multicolor lanthanide supramolecular assembly with white light emission is reported, which is constructed by co-assembly of cucurbit[7]uril (CB[7]) encapsulating naphthylimidazolium dicarboxylic acid (G1 )/Ln (Eu3+ /Tb3+ ) complex and carbon quantum dots (CD). Benefiting from the macrocyclic confinement effect of CB[7], the supramolecular assembly not only extends the fluorescence intensity of the lanthanide complex G1 /Tb3+ by 36 times, but also increases the quantum yield by 28 times and the fluorescence lifetime by 12 times. Furthermore, the CB[7]/G1 /Ln assembly can further co-assemble with CD and diarylethene derivatives (DAE) to realize the intelligently-regulated full-color spectrum including white light, which results from the competitive encapsulation of adamantylamine and CB[7], the change of pH, and photochromic DAE. The multi-level logic gate based on lanthanide supramolecular assembly is successfully applied in anti-counterfeiting system and information storage, providing an effective method for the research of new luminescent intelligent materials.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
- College of Chemistry and Material Science, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao, 028000, P. R. China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
9
|
Fu XK, Han SQ, Ha W, Shi YP. Click Chemoselective Probe with a Photoswitchable Handle for Highly Sensitive Determination of Steroid Hormones in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14814-14824. [PMID: 37782472 DOI: 10.1021/acs.jafc.3c05262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Residues of endocrine disrupting steroid hormones in food might cause various diseases like cardiovascular diseases and breast and prostate cancers. Monitoring steroid hormone levels plays a vital role in ensuring food safety and exploring the pathogenic mechanism of steroid hormone-related diseases. Based on the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction, a novel chemoselective probe, Azo-N3, which contains a reactive site N3, an imidazolium salt-based MS tag, and an azobenzene-based photoswitchable handle, was designed and synthesized to label ethynyl-bearing steroid hormones. The probe Azo-N3 was applied for the highly selective and sensitive detection of four ethynyl-bearing steroid hormones in food samples (milk, egg, and pork) by using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The ionization efficiency of the labeled analytes could be increased by 6-105-fold, and such a labeled method exhibited satisfactory detection limits (0.04-0.2 μg/L), recovery (80.6-122.4%), and precision (RSDs% lower than 6.9%). Interestingly, the efficient immobilization of the probe Azo-N3 onto α-cyclodextrin (α-CD)-modified magnetic particles to construct a solid supported chemoselective probe Fe3O4-CD-Azo-N3 and UV light-controlled release of the labeled analytes from a magnetic support can be achieved by taking advantage of the photoswitched host-guest inclusion between the azobenzene unit and α-CD. The potential applications of Fe3O4-CD-Azo-N3 for labeling, capturing, and the photocontrolled release of the labeled steroid hormones were fully investigated by mass spectrometry imaging analysis. This work not only provides a sensitive and accurate method to detect steroid hormones in food but also opens a new avenue in designing solid supported chemoselective probes.
Collapse
Affiliation(s)
- Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Si-Qi Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| |
Collapse
|
10
|
Zhou WL, Dai XY, Lin W, Chen Y, Liu Y. A pillar[5]arene noncovalent assembly boosts a full-color lanthanide supramolecular light switch. Chem Sci 2023; 14:6457-6466. [PMID: 37325139 PMCID: PMC10266474 DOI: 10.1039/d3sc01425h] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023] Open
Abstract
A photo-responsive full-color lanthanide supramolecular switch was constructed from a synthetic 2,6-pyridine dicarboxylic acid (DPA)-modified pillar[5]arene (H) complexing with lanthanide ion (Ln3+ = Tb3+ and Eu3+) and dicationic diarylethene derivative (G1) through a noncovalent supramolecular assembly. Benefiting from the strong complexation between DPA and Ln3+ with a 3 : 1 stoichiometric ratio, the supramolecular complex H/Ln3+ presented an emerging lanthanide emission in the aqueous and organic phase. Subsequently, a network supramolecular polymer was formed by H/Ln3+ further encapsulating dicationic G1via the hydrophobic cavity of pillar[5]arene, which greatly contributed to the increased emission intensity and lifetime, and also resulted in the formation of a lanthanide supramolecular light switch. Moreover, full-color luminescence, especially white light emission, was achieved in aqueous (CIE: 0.31, 0.32) and dichloromethane (CIE: 0.31, 0.33) solutions by the adjustment of different ratios of Tb3+ and Eu3+. Notably, the photo-reversible luminescence properties of the assembly were tuned via alternant UV/vis light irradiation due to the conformation-dependent photochromic energy transfer between the lanthanide and the open/closed-ring of diarylethene. Ultimately, the prepared lanthanide supramolecular switch was successfully applied to anti-counterfeiting through the use of intelligent multicolored writing inks, and presents new opportunities for the design of advanced stimuli-responsive on-demand color tuning with lanthanide luminescent materials.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
- College of Chemistry and Material Science, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University Tongliao 028000 P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences Taian 271016 China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
| |
Collapse
|
11
|
Ye N, Pei YR, Han Q, Jin LY. Photoresponsive reversible self-assembly of rod-coil amphiphiles containing spiropyran groups. SOFT MATTER 2023; 19:1540-1548. [PMID: 36745471 DOI: 10.1039/d2sm01690g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stimuli-responsive assembly deformation is a key feature in constructing smart soft materials, which makes them versatile and autonomous. In this study, rod-coil amphiphilic compounds containing spiropyran (SP) groups were developed and synthesized to investigate their stimuli-responsive assembly in a solution system with 99% water content. In addition to photochromic phenomena, reversible light-mediated morphological alterations occurred in these molecular aggregates. Based on the different flexible chain segments of rod-coil amphiphiles, the initial assemblies underwent a dissociation-reassembly process under ultraviolet (UV) irradiation, whereupon they deformed or disassembled to assemblies. Furthermore, as the UV source was removed, the original nanostructures were gradually recovered again via the ring-closing reaction process. These compounds, interestingly, can selectively combine with copper ions to produce cross-linked co-assembled nanostructures. The copper ion complex solution of rod-coil amphiphilic compounds emitted unique bright blue fluorescence, which allowed for the specific visual identification of copper ions in aqueous solutions.
Collapse
Affiliation(s)
- Nan Ye
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Qingqing Han
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
12
|
Yu M, Chen Y, Luo Y, Gong G, Zhang Y, Tan H, Xu L, Xu J. Photoswitchable lanthanide-doped core-multishell nanoparticles for tunable triple-mode information encryption and dynamic anti-counterfeiting patterns. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|