1
|
Jin M, Han X, Chou T, Li S, Pi Y, Chen K, Chen T, Wang S, Yang Y, Wang J, Jin H. Interfacial engineering of ruthenium-nickel for efficient hydrogen electrocatalysis in alkaline medium. J Colloid Interface Sci 2025; 678:272-280. [PMID: 39197370 DOI: 10.1016/j.jcis.2024.08.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Developing highly efficient electrocatalyst with heterostructure for hydrogen evolution and oxidation reactions (HER/HOR) in alkaline media is crucial to the fabrication and conversion of hydrogen energy but also remains a great challenge. Herein, the synthesis of ruthenium-nickel nanoparticles (Ru3-Ni NPs) with heterostructure for hydrogen electrocatalysis is reported, and studies show that their catalytic activity is improved by electron redistribution caused by the distinctly heterogeneous interface. Impressively, Ru3-Ni NPs possess the remarkable exchange current density (2.22 mA cm-2) for HOR. Additionally, an ultra-low overpotential of 28 mV is required to attain a current density of 10 mA cm-2 and superior stability of 200 h for HER. The highly efficient catalytic activity can be attributed to the electron transfer from Ni to Ru and the optimal adsorption of H* on Ru-Ni sites. Our study showcases a reliable heterostructure that boosts the HOR/HER activity of the catalyst in alkaline environments. This work provides a new pathway for designing high-performance electrocatalyst for energy storage and conversion.
Collapse
Affiliation(s)
- Mengyuan Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiang Han
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Ting Chou
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shuangyan Li
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University, 225009 Yangzhou, Jiangsu, China
| | - Kai Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Tingting Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yun Yang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Juan Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Huile Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China; Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
2
|
Guo W, Li J, Chai D, Guo D, Sui G, Li Y, Luo D, Tan L. Iron Active Center Coordination Reconstruction in Iron Carbide Modified on Porous Carbon for Superior Overall Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401455. [PMID: 38659236 PMCID: PMC11220683 DOI: 10.1002/advs.202401455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/11/2024] [Indexed: 04/26/2024]
Abstract
In this work, a novel liquid nitrogen quenching strategy is engineered to fulfill iron active center coordination reconstruction within iron carbide (Fe3C) modified on biomass-derived nitrogen-doped porous carbon (NC) for initiating rapid hydrogen and oxygen evolution, where the chrysanthemum tea (elm seeds, corn leaves, and shaddock peel, etc.) is treated as biomass carbon source within Fe3C and NC. Moreover, the original thermodynamic stability is changed through the corresponding force generated by liquid nitrogen quenching and the phase transformation is induced with rich carbon vacancies with the increasing instantaneous temperature drop amplitude. Noteworthy, the optimizing intermediate absorption/desorption is achieved by new phases, Fe coordination, and carbon vacancies. The Fe3C/NC-550 (550 refers to quenching temperature) demonstrates outstanding overpotential for hydrogen evolution reaction (26.3 mV at -10 mA cm-2) and oxygen evolution reaction (281.4 mV at 10 mA cm-2), favorable overall water splitting activity (1.57 V at 10 mA cm-2). Density functional theory (DFT) calculations further confirm that liquid nitrogen quenching treatment can enhance the intrinsic electrocatalytic activity efficiently by optimizing the adsorption free energy of reaction intermediates. Overall, the above results authenticate that liquid nitrogen quenching strategy open up new possibilities for obtaining highly active electrocatalysts for the new generation of green energy conversion systems.
Collapse
Affiliation(s)
- Wenxin Guo
- College of Chemistry and Chemical EngineeringKey Laboratory of Fine Chemicals of College of Heilongjiang ProvinceQiqihar UniversityQiqihar161006China
| | - Jinlong Li
- College of Chemistry and Chemical EngineeringKey Laboratory of Fine Chemicals of College of Heilongjiang ProvinceQiqihar UniversityQiqihar161006China
| | - Dong‐Feng Chai
- College of Chemistry and Chemical EngineeringKey Laboratory of Fine Chemicals of College of Heilongjiang ProvinceQiqihar UniversityQiqihar161006China
| | - Dongxuan Guo
- College of Chemistry and Chemical EngineeringKey Laboratory of Fine Chemicals of College of Heilongjiang ProvinceQiqihar UniversityQiqihar161006China
| | - Guozhe Sui
- College of Chemistry and Chemical EngineeringKey Laboratory of Fine Chemicals of College of Heilongjiang ProvinceQiqihar UniversityQiqihar161006China
| | - Yue Li
- School of Polymer Science & EngineeringQingdao University of Science & TechnologyQingdao266000China
| | - Dan Luo
- Department of Chemical EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Lichao Tan
- Institute of Carbon NeutralityZhejiang Wanli UniversityNingbo315100China
| |
Collapse
|
3
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Hu Y, Huang Z, Zhang Q, Taylor Isimjan T, Chu Y, Mu Y, Wu B, Huang Z, Yang X, Zeng L. Interfacial engineering of Co 5.47N/Mo 5N 6 nanosheets with rich active sites synergistically accelerates water dissociation kinetics for Pt-like hydrogen evolution. J Colloid Interface Sci 2023; 643:455-464. [PMID: 37088049 DOI: 10.1016/j.jcis.2023.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023]
Abstract
The development of highly efficient hydrogen evolution electrocatalysts with platinum-like activity requires precise control of active sites through interface engineering strategies. In this study, a heterostructured Co5.47N/Mo5N6 catalyst (CoMoNx) on carbon cloth (CC) was synthesized using a combination of dip-etching and vapor nitridation methods. The rough nanosheet surface of the catalyst with uniformly distributed elements exposes a large active surface area and provides abundant interface sites that serve as additional active sites. The CoMoNx was found to exhibit exceptional hydrogen evolution reaction (HER) activity with a low overpotential of 44 mV at 10 mA cm-2 and exceptional stability of 100 h in 1.0 M KOH. The CoMoNx(-)||RuO2(+) system requires only 1.81 V cell voltage to reach a current density of 200 mA cm-2, surpassing the majority of previously reported electrolyzers. Density functional theory (DFT) calculations reveal that the strong synergy between Co5.47N and Mo5N6 at the interface can significantly reduce the water dissociation energy barrier, thereby improving the kinetics of hydrogen evolution. Furthermore, the rough nanosheet architecture of the CoMoNx catalyst with abundant interstitial spaces and multi-channels enhances charge transport and reaction intermediate transportation, synergistically improving the performance of the HER for water splitting.
Collapse
Affiliation(s)
- Yan Hu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiyang Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qing Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tayirjan Taylor Isimjan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Youqi Chu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yongbiao Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Baoxin Wu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zebing Huang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Lin Zeng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Xue Z, Guo J, Wu S, Xie W, Fu Y, Zhao X, Fan K, Xu M, Yan H, Shao M, Duan X. Co-thermal in-situ reduction of inorganic carbonates to reduce carbon-dioxide emission. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
6
|
Ding X, Pei L, Huang Y, Chen D, Xie Z. Hollow NiCoP Nanoprisms Derived from Prussian Blue Analogues as Bifunctional Electrocatalysts for Urea-Assisted Hydrogen Production in Alkaline Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205547. [PMID: 36328713 DOI: 10.1002/smll.202205547] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Integrating the hydrogen evolution reaction (HER) and urea oxidation reaction (UOR) is an energy-saving approach for electrolytic H2 production. Here, hollow NiCoP nanoprisms are derived from Prussian blue analogues by a combined self-template coordination reaction and gas-phase phosphorization strategy. Benefiting from the strong electron interaction, unique hollow nanostructure, and enhanced mass/charge transfer, NiCoP nanoprisms display outstanding alkaline HER and UOR performance. Specifically, low potentials of -0.052, -0.115, and -0.159 V for HER and ultralow potentials of 1.30, 1.36, and 1.42 V for UOR at current densities of 10, 50, and 100 mA cm-2 are obtained. Moreover, in a urea-assisted water electrolysis system, NiCoP nanoprisms only require cell voltages of 1.36, 1.49, and 1.57 V to offer current densities of 10, 50, and 100 mA cm-2 , about 170, 180, and 200 mV less than the traditional water electrolysis. Theoretical calculations indicate the Co substitution in Ni2 P promotes the adsorption and dissociation of water molecules, optimizes the desorption energy of active hydrogen atoms, and enhances the adsorption of urea molecules, thus accelerating the kinetics of HER and UOR. This work facilitates the application of hollow bimetallic phosphides in electrochemical preparation of clean energy and provides a successful paradigm for urea-rich wastewater electrolysis.
Collapse
Affiliation(s)
- Xueda Ding
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Lishun Pei
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Yuxin Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Dongyang Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Zailai Xie
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| |
Collapse
|