1
|
Mustafa YL, Balestri A, Huang X, Palivan C. Redefining drug therapy: innovative approaches using catalytic compartments. Expert Opin Drug Deliv 2024; 21:1395-1413. [PMID: 39259136 DOI: 10.1080/17425247.2024.2403476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Rapid excretion of drug derivatives often results in short drug half-lives, necessitating frequent administrations. Catalytic compartments, also known as nano- and microreactors, offer a solution by providing confined environments for in situ production of therapeutic agents. Inspired by natural compartments, polymer-based catalytic compartments have been developed to improve reaction efficiency and enable site-specific therapeutic applications. AREAS COVERED Polymer-based compartments provide stability, permeability control, and responsiveness to stimuli, making them ideal for generating localized compounds/signals. These sophisticated systems, engineered to carry active compounds and enable selective molecular release, represent a significant advancement in pharmaceutical research. They mimic cellular functions, creating controlled catalytic environments for bio-relevant processes. This review explores the latest advancements in synthetic catalytic compartments, focusing on design approaches, building blocks, active molecules, and key bio-applications. EXPERT OPINION Catalytic compartments hold transformative potential in precision medicine by improving therapeutic outcomes through precise, on-site production of therapeutic agents. While promising, challenges like scalable manufacturing, biodegradability, and regulatory hurdles must be addressed to realize their full potential. Addressing these will be crucial for their successful application in healthcare.
Collapse
Affiliation(s)
| | - Arianna Balestri
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Xinan Huang
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Cornelia Palivan
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Centre of Competence in Research-Molecular Systems Engineering, Basel, Switzerland
| |
Collapse
|
2
|
Korpidou M, Becker J, Tarvirdipour S, Dinu IA, Becer CR, Palivan CG. Glycooligomer-Functionalized Catalytic Nanocompartments Co-Loaded with Enzymes Support Parallel Reactions and Promote Cell Internalization. Biomacromolecules 2024; 25:4492-4509. [PMID: 38910355 PMCID: PMC11238334 DOI: 10.1021/acs.biomac.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
A major shortcoming associated with the application of enzymes in drug synergism originates from the lack of site-specific, multifunctional nanomedicine. This study introduces catalytic nanocompartments (CNCs) made of a mixture of PDMS-b-PMOXA diblock copolymers, decorated with glycooligomer tethers comprising eight mannose-containing repeating units and coencapsulating two enzymes, providing multifunctionality by their in situ parallel reactions. Beta-glucuronidase (GUS) serves for local reactivation of the drug hymecromone, while glucose oxidase (GOx) induces cell starvation through glucose depletion and generation of the cytotoxic H2O2. The insertion of the pore-forming peptide, melittin, facilitates diffusion of substrates and products through the membranes. Increased cell-specific internalization of the CNCs results in a substantial decrease in HepG2 cell viability after 24 h, attributed to simultaneous production of hymecromone and H2O2. Such parallel enzymatic reactions taking place in nanocompartments pave the way to achieve efficient combinatorial cancer therapy by enabling localized drug production along with reactive oxygen species (ROS) elevation.
Collapse
Affiliation(s)
- Maria Korpidou
- Department
of Chemistry, University of Basel, Mattenstrasse 22, Basel 4002, Switzerland
| | - Jonas Becker
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Shabnam Tarvirdipour
- Department
of Chemistry, University of Basel, Mattenstrasse 22, Basel 4002, Switzerland
| | - Ionel Adrian Dinu
- Department
of Chemistry, University of Basel, Mattenstrasse 22, Basel 4002, Switzerland
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Cornelia G. Palivan
- Department
of Chemistry, University of Basel, Mattenstrasse 22, Basel 4002, Switzerland
- NCCR
Molecular Systems Engineering, Mattenstrasse 22, Basel 4002, Switzerland
| |
Collapse
|
3
|
Seo H, Lee H. Programmable Enzymatic Reaction Network in Artificial Cell-Like Polymersomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305760. [PMID: 38627986 PMCID: PMC11200095 DOI: 10.1002/advs.202305760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/14/2024] [Indexed: 06/27/2024]
Abstract
The ability to precisely control in vitro enzymatic reactions in synthetic cells plays a crucial role in the bottom-up design of artificial cell models that can recapitulate the key cellular features and functions such as metabolism. However, integration of enzymatic reactions has been limited to bulk or microfluidic emulsions without a membrane, lacking the ability to design more sophisticated higher-order artificial cell communities for reconstituting spatiotemporal biological information at multiple length scales. Herein, droplet microfluidics is utilized to synthesize artificial cell-like polymersomes with distinct molecular permeability for spatiotemporal control of enzymatic reactions driven by external signals and fuels. The presence of a competing reverse enzymatic reaction that depletes the active substrates is shown to enable demonstration of fuel-driven formation of sub-microcompartments within polymersomes as well as realization of out-of-equilibrium systems. In addition, the different permeability characteristics of polymersome membranes are exploited to successfully construct a programmable enzymatic reaction network that mimics cellular communication within a heterogeneous cell community through selective molecular transport.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673South Korea
| | - Hyomin Lee
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673South Korea
| |
Collapse
|
4
|
Wolf KMP, Maffeis V, Schoenenberger CA, Zünd T, Bar-Peled L, Palivan CG, Vogel V. Tweaking the NRF2 signaling cascade in human myelogenous leukemia cells by artificial nano-organelles. Proc Natl Acad Sci U S A 2024; 121:e2219470121. [PMID: 38776365 PMCID: PMC11145192 DOI: 10.1073/pnas.2219470121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
NRF2 (nuclear factor erythroid-2-related factor 2) is a key regulator of genes involved in the cell's protective response to oxidative stress. Upon activation by disturbed redox homeostasis, NRF2 promotes the expression of metabolic enzymes to eliminate reactive oxygen species (ROS). Cell internalization of peroxisome-like artificial organelles that harbor redox-regulating enzymes was previously shown to reduce ROS-induced stress and thus cell death. However, if and to which extent ROS degradation by such nanocompartments interferes with redox signaling pathways is largely unknown. Here, we advance the design of H2O2-degrading artificial nano-organelles (AnOs) that exposed surface-attached cell penetrating peptides (CPP) for enhanced uptake and were equipped with a fluorescent moiety for rapid visualization within cells. To investigate how such AnOs integrate in cellular redox signaling, we engineered leukemic K562 cells that report on NRF2 activation by increased mCherry expression. Once internalized, ROS-metabolizing AnOs dampen intracellular NRF2 signaling upon oxidative injury by degrading H2O2. Moreover, intracellular AnOs conferred protection against ROSinduced cell death in conditions when endogenous ROS-protection mechanisms have been compromised by depletion of glutathione or knockdown of NRF2. We demonstrate CPP-facilitated AnO uptake and AnO-mediated protection against ROS insults also in the T lymphocyte population of primary peripheral blood mononuclear cells from healthy donors. Overall, our data suggest that intracellular AnOs alleviated cellular stress by the on-site reduction of ROS.
Collapse
Affiliation(s)
- Konstantin M. P. Wolf
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, 8006Zurich, Switzerland
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
| | - Viviana Maffeis
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
- Department of Chemistry, University of Basel, 4002Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
- Department of Chemistry, University of Basel, 4002Basel, Switzerland
| | - Tamara Zünd
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, 8006Zurich, Switzerland
| | - Liron Bar-Peled
- Center for Cancer Research, Massachusetts General Hospital/Department of Medicine, Harvard Medical School, Boston, MA02129, USA
| | - Cornelia G. Palivan
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
- Department of Chemistry, University of Basel, 4002Basel, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, 8006Zurich, Switzerland
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
| |
Collapse
|
5
|
Maffeis V, Skowicki M, Wolf KMP, Chami M, Schoenenberger CA, Vogel V, Palivan CG. Advancing the Design of Artificial Nano-organelles for Targeted Cellular Detoxification of Reactive Oxygen Species. NANO LETTERS 2024; 24:2698-2704. [PMID: 38408754 PMCID: PMC10921454 DOI: 10.1021/acs.nanolett.3c03888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/28/2024]
Abstract
Artificial organelles (AnOs) are in the spotlight as systems to supplement biochemical pathways in cells. While polymersome-based artificial organelles containing enzymes to reduce reactive oxygen species (ROS) are known, applications requiring control of their enzymatic activity and cell-targeting to promote intracellular ROS detoxification are underexplored. Here, we introduce advanced AnOs where the chemical composition of the membrane supports the insertion of pore-forming melittin, enabling molecular exchange between the AnO cavity and the environment, while the encapsulated lactoperoxidase (LPO) maintains its catalytic function. We show that H2O2 outside AnOs penetrates through the melittin pores and is rapidly degraded by the encapsulated enzyme. As surface attachment of cell-penetrating peptides facilitates AnOs uptake by cells, electron spin resonance revealed a remarkable enhancement in intracellular ROS detoxification by these cell-targeted AnOs compared to nontargeted AnOs, thereby opening new avenues for a significant reduction of oxidative stress in cells.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
| | - Michal Skowicki
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
| | - Konstantin M. P. Wolf
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
- Laboratory
of Applied Mechanobiology, Institute of Translational Medicine, Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mohamed Chami
- BioEM
lab, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Viola Vogel
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
- Laboratory
of Applied Mechanobiology, Institute of Translational Medicine, Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Cornelia G. Palivan
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
| |
Collapse
|
6
|
Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C, Palivan CG. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305837. [PMID: 37984885 PMCID: PMC10885666 DOI: 10.1002/advs.202305837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
| | - Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
| | - Anamarija Nikoletić
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| |
Collapse
|