1
|
Chen K, Qin YR, Liu SQ, Chen RL. Remission of iron overload in adipose tissue of obese mice by fatty acid-modified polyoxovanadates. RARE METALS 2024. [DOI: 10.1007/s12598-024-02925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 09/11/2024]
|
2
|
Chen K, Liu S, Wei Y. Sub-nanosized vanadate hybrid clusters maintain glucose homeostasis and restore treatment response in inflammatory disease in obese mice. NANO RESEARCH 2024; 17:1818-1826. [DOI: 10.1007/s12274-023-6366-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 09/11/2024]
|
3
|
Kuang F, Hui T, Chen Y, Qiu M, Gao X. Post-Graphene 2D Materials: Structures, Properties, and Cancer Therapy Applications. Adv Healthc Mater 2024; 13:e2302604. [PMID: 37955406 DOI: 10.1002/adhm.202302604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Cancer is one of the most serious diseases challenging human health and life span. Cancer has claimed millions of lives worldwide. Early diagnosis and effective treatment of cancer are very important for the survival of patients. In recent years, 2D nanomaterials have shown great potential in the development of anticancer treatment by combining their inherent physicochemical properties after surface modification. 2D nanomaterials have attracted great interest due to their unique nanosheet structure, large surface area, and extraordinary physicochemical properties. This article reviews the advantages and application status of emerging 2D nanomaterials for targeted tumor synergistic therapy compared with traditional therapeutic strategies. In order to investigate novel potential anticancer strategies, this paper focuses on the surface modification, cargo delivery capability, and unique optical properties of emerging 2D nanomaterials. Finally, the current problems and challenges in cancer treatment are summarized and prospected.
Collapse
Affiliation(s)
- Fei Kuang
- College of Life Sciences, Qingdao University, No.308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Tiankun Hui
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Yingjie Chen
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, No.308 Ningxia Road, Qingdao, Shandong, 266071, China
| |
Collapse
|
4
|
Hu Y, Huang D, Yan J, Miao Z, Yu L, Cai N, Fang Q, Zhang Q, Yan Y. Polyoxovanadate-Based Cyclomatrix Polyphosphazene Microspheres as Efficient Heterogeneous Catalysts for the Selective Oxidation and Desulfurization of Sulfides. Molecules 2022; 27:molecules27238560. [PMID: 36500654 PMCID: PMC9738953 DOI: 10.3390/molecules27238560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The [V6O13]2- cluster is successfully immobilized to the polymeric framework of cyclomatrix polyphosphazene via the facile precipitation polymerization between the phenol group symmetrically modified [V6O13]2- and hexachlorocyclotriphosphazene. The structure of the as-prepared polyoxometalate-containing polyphosphazene (HCCP-V) was characterized by FT-IR, XPS, TGA, BET, as well as SEM and zeta potential. The presence of a rigid polyoxometalate cluster not only supports the porous structure of the polymeric framework but also provides an improved catalytic oxidation property. By using H2O2 as an oxidant, the as-prepared HCCP-V exhibited improved catalytic oxidation activity toward MPS, DBT, and CEES, which can achieve as high as 99% conversion. More importantly, the immobilization of POMs in the network of cyclomatrix polyphosphazene also provides better recyclability and stability of the heterogeneous catalyst.
Collapse
Affiliation(s)
- Yinghui Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Diping Huang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Jing Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
- Correspondence: (J.Y.); (Y.Y.)
| | - Zhiliang Miao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Lize Yu
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Ningjing Cai
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Quanhai Fang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Yi Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
- Correspondence: (J.Y.); (Y.Y.)
| |
Collapse
|