1
|
Verma R, Sharma G, Polshettiwar V. The paradox of thermal vs. non-thermal effects in plasmonic photocatalysis. Nat Commun 2024; 15:7974. [PMID: 39266509 PMCID: PMC11393361 DOI: 10.1038/s41467-024-51916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
The debate surrounding the roles of thermal and non-thermal pathways in plasmonic catalysis has captured the attention of researchers and sparked vibrant discussions within the scientific community. In this review, we embark on a thorough exploration of this intriguing discourse, starting from fundamental principles and culminating in a detailed understanding of the divergent viewpoints. We probe into the core of the debate by elucidating the behavior of excited charge carriers in illuminated plasmonic nanostructures, which serves as the foundation for the two opposing schools of thought. We present the key arguments and evidence put forth by proponents of both the non-thermal and thermal pathways, providing a perspective on their respective positions. Beyond the theoretical divide, we discussed the evolving methodologies used to unravel these mechanisms. We discuss the use of Arrhenius equations and their variations, shedding light on the ensuing debates about their applicability. Our review emphasizes the significance of localized surface plasmon resonance (LSPR), investigating its role in collective charge oscillations and the decay dynamics that influence catalytic processes. We also talked about the nuances of activation energy, exploring its relationship with the nonlinearity of temperature and light intensity dependence on reaction rates. Additionally, we address the intricacies of catalyst surface temperature measurements and their implications in understanding light-triggered reaction dynamics. The review further discusses wavelength-dependent reaction rates, kinetic isotope effects, and competitive electron transfer reactions, offering an all-inclusive view of the field. This review not only maps the current landscape of plasmonic photocatalysis but also facilitates future explorations and innovations to unlock the full potential of plasmon-mediated catalysis, where synergistic approaches could lead to different vistas in chemical transformations.
Collapse
Affiliation(s)
- Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Gunjan Sharma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India.
| |
Collapse
|
2
|
Lan J, Qu S, Ye X, Zheng Y, Ma M, Guo S, Huang S, Li S, Kang J. Core-Shell Semiconductor-Graphene Nanoarchitectures for Efficient Photocatalysis: State of the Art and Perspectives. NANO-MICRO LETTERS 2024; 16:280. [PMID: 39249597 PMCID: PMC11383916 DOI: 10.1007/s40820-024-01503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024]
Abstract
Semiconductor photocatalysis holds great promise for renewable energy generation and environment remediation, but generally suffers from the serious drawbacks on light absorption, charge generation and transport, and structural stability that limit the performance. The core-shell semiconductor-graphene (CSSG) nanoarchitectures may address these issues due to their unique structures with exceptional physical and chemical properties. This review explores recent advances of the CSSG nanoarchitectures in the photocatalytic performance. It starts with the classification of the CSSG nanoarchitectures by the dimensionality. Then, the construction methods under internal and external driving forces were introduced and compared with each other. Afterward, the physicochemical properties and photocatalytic applications of these nanoarchitectures were discussed, with a focus on their role in photocatalysis. It ends with a summary and some perspectives on future development of the CSSG nanoarchitectures toward highly efficient photocatalysts with extensive application. By harnessing the synergistic capabilities of the CSSG architectures, we aim to address pressing environmental and energy challenges and drive scientific progress in these fields.
Collapse
Affiliation(s)
- Jinshen Lan
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Shanzhi Qu
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xiaofang Ye
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yifan Zheng
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Mengwei Ma
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Shengshi Guo
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Shengli Huang
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Shuping Li
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Junyong Kang
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
| |
Collapse
|
3
|
Buravets V, Gorin O, Burtsev V, Zabelina A, Zabelin D, Kosina J, Maixner J, Svorcik V, Kolganov AA, Pidko EA, Lyutakov O. Plasmon-Mediated Organic Photoelectrochemistry Applied to Amination Reactions. Chempluschem 2024; 89:e202400020. [PMID: 38747893 DOI: 10.1002/cplu.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/08/2024] [Indexed: 08/15/2024]
Abstract
Organic electrochemistry is currently experiencing an era of renaissance, which is closely related to the possibility of carrying out organic transformations under mild conditions, with high selectivity, high yields, and without the use of toxic solvents. Combination of organic electrochemistry with alternative approaches, such as photo-chemistry was found to have great potential due to induced synergy effects. In this work, we propose for the first time utilization of plasmon triggering of enhanced and regio-controlled organic chemical transformation performed in photoelectrochemical regime. The advantages of the proposed route is demonstrated in the model amination reaction with formation of C-N bond between pyrazole and substituted benzene derivatives. Amination was performed in photo-electrochemical mode on the surface of plasmon active Au@Pt electrode with attention focused on the impact of plasmon triggering on the reaction efficiency and regio-selectivity. The ability to enhance the reaction rate significantly and to tune products regio-selectivity is demonstrated. We also performed density functional theory calculations to inquire about the reaction mechanism and potentially explain the plasmon contribution to electrochemical reaction rate and regioselectivity.
Collapse
Affiliation(s)
- Vladislav Buravets
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Oleg Gorin
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Vasilii Burtsev
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Anna Zabelina
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Denis Zabelin
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jiri Kosina
- Central Laboratories, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jaroslav Maixner
- Central Laboratories, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Alexander A Kolganov
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| |
Collapse
|
4
|
Li M, Van Der Veer M, Yang X, Weng B, Shen L, Huang H, Dong X, Wang G, Roeffaers MBJ, Yang MQ. Twin boundary defect engineering in Au cocatalyst to promote alcohol splitting for coproduction of H 2 and fine chemicals. J Colloid Interface Sci 2024; 657:819-829. [PMID: 38086245 DOI: 10.1016/j.jcis.2023.11.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/02/2024]
Abstract
The microstructure of Au metal cocatalyst has been shown to significantly influence its optical and electronic properties. However, the impact of Au defect engineering on photocatalytic activity remains underexplored. In this study, we synthesize different Au-TiO2 composites by in-situ hybridizing face-centered cubic (F-Au) and twin boundary defect Au (T-Au) nanoparticles (NPs) onto the surface of TiO2. We find that T-Au NPs with twin defects serve as highly efficient cocatalysts for converting alcohols into their corresponding aldehydes while also generating H2. The optimized T-Au/TiO2 composite yields an H2 evolution rate of 6850 µmol h-1 g-1 and a BAD formation rate of 6830 µmol h-1 g-1, about 38 times higher than that of blank TiO2. Compared to F-Au/TiO2, the T-Au/TiO2 composite enhances charge separation, extends the lifetime of electrons, and provides more active sites for H2 reduction. The twin defect also improves alcohol reactant adsorption, boosting overall photocatalytic performance. This research paves the way for more studies on defect engineering in metal cocatalysts for enhanced catalytic activities in organic synthesis and H2 evolution.
Collapse
Affiliation(s)
- Mengqing Li
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Mathias Van Der Veer
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Xuhui Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Lijuan Shen
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Haowei Huang
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Xiongbo Dong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
| | - Guanhua Wang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Min-Quan Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
5
|
Zhao W, Liu S, Liu Y, Yang S, Liu B, Hong X, Shen J, Sun C. Integration of ohmic junction and step-scheme heterojunction for enhanced photocatalysis. J Colloid Interface Sci 2024; 654:134-149. [PMID: 37837850 DOI: 10.1016/j.jcis.2023.09.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023]
Abstract
A novel and efficient photocatalyst, Cu2WS4/MoS2-Au plasmonic Step-scheme (S-scheme) heterojunction, was constructed for the first time and applied to remove environmental pollutants. Among all the prepared photocatalysts, the. Cu2WS4/MoS2-Au-5 exhibited the highest catalytic activity with an 89.1% reduction efficiency for Cr6+ and a 98.7% oxidation efficiency for Benzophenone-1 (BP-1) under visible light irradiation. The Cu2WS4/MoS2-Au photocatalyst exhibits stable performance and efficient photocatalytic activity due to effective charge separation, enhanced light absorption from localized surface plasmon resonance (LSPR) of gold nanoparticles, and the formation of an S-scheme heterojunction with strong oxidation-reduction capabilities. In addition, through analysis of experiments and theoretical calculations, it is speculated that the Cu2WS4/MoS2-Au follows a typical S-scheme photogenerated carrier transferring mechanism, which is verified by the finite difference time domain simulation, the free radical quenching experiments, the electron paramagnetic resonance analysis and the simulated charge density distribution. More importantly, the simulations of the work function and charge density distribution confirm the built-in electric field and the ohmic junction have been established at the interfaces between the Cu2WS4 and MoS2 (Cu2WS4/MoS2) as well as the interface between MoS2 and Au (MoS2-Au), respectively. The built-in electric field and ohmic junction enable efficient separation of photogenerated electrons and holes, ensuring the superior catalytic oxidation and reduction activities of the Cu2WS4/MoS2-Au photocatalyst. Finally, we propose a photocatalytic mechanism for the Cu2WS4/MoS2-Au plasmonic S-scheme heterojunction based on experimental results and simulated calculations. The research results of this study are significance for the development of the plasmonic S-scheme photocatalytic system.
Collapse
Affiliation(s)
- Wei Zhao
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, China.
| | - Siying Liu
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, China
| | - Yun Liu
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, China
| | - Shuo Yang
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, China
| | - Benzhi Liu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - Xuekun Hong
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, China
| | - Junyu Shen
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, China.
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Zhang Y, Shi H, Zhao S, Chen Z, Zheng Y, Tu G, Zhong S, Zhao Y, Bai S. Hollow Plasmonic P-Metal-N S-Scheme Heterojunction Photoreactor with Spatially Separated Dual Cocatalysts toward Artificial Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304050. [PMID: 37712104 DOI: 10.1002/smll.202304050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Semiconductor-based step-scheme (S-scheme) heterojunctions possess many merits toward mimicking natural photosynthesis. However, their applications for solar-to-chemical energy conversion are hindered by inefficient charge utilization and unsatisfactory surface reactivity. Herein, two synergistic protocols are demonstrated to overcome these limitations based on the construction of a hollow plasmonic p-metal-n S-scheme heterojunction photoreactor with spatially separated dual noble-metal-free cocatalysts. On one side, plasmonic Au, inserted into the heterointerfaces of CuS@ZnIn2 S4 core-shell nanoboxes, not only accelerates the transfer and recombination of useless charges, enabling a more thorough separation of useful ones for CO2 reduction and H2 O oxidation but also generates hot electrons and holes, respectively injects them into ZnIn2 S4 and CuS, further increasing the number of active carriers participating in redox reactions. On the other side, Fe(OH)x and Ti3 C2 cocatalysts, separately located on the CuS and ZnIn2 S4 surface, enrich the redox sites, adjust the reduction potential and pathway for selective CO2 -to-CH4 transformation, and balance the transfer and consumption of photocarriers. As expected, significantly enhanced activity and selectivity in CH4 production are achieved by the smart design along with nearly stoichiometric ratios of reduction and oxidation products. This study paves the way for optimizing artificial photosynthetic systems via rational interfacial channel introduction and surface cocatalyst modification.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Hulin Shi
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuyi Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Zhulei Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yiyi Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Gaomei Tu
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuxian Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yuling Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Song Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| |
Collapse
|
7
|
Wang S, Li Z, Yang G, Xu Y, Zheng Y, Zhong S, Zhao Y, Bai S. Embedding Nano-Piezoelectrics into Heterointerfaces of S-Scheme Heterojunctions for Boosting Photocatalysis and Piezophotocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302717. [PMID: 37340893 DOI: 10.1002/smll.202302717] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Step-scheme (S-scheme) heterojunctions have exhibited great potential in photocatalysis due to their extraordinary light harvesting and high redox capacities. However, inadequate S-scheme recombination of useless carriers in weak redox abilities increases the probability of their recombination with useful ones in strong redox capabilities. Herein, a versatile protocol is demonstrated to overcome this impediment based on the insertion of nano-piezoelectrics into the heterointerfaces of S-scheme heterojunctions. Under light excitation, the piezoelectric inserter promotes interfacial charge transfer and produces additional photocarriers to recombine with useless electrons and holes, ensuring a more thorough separation of powerful ones for CO2 reduction and H2 O oxidation. When introducing extra ultrasonic vibration, a piezoelectric polarization field is established, which allows efficient separation of charges generated by the embedded piezoelectrics and expedites their recombination with weak carriers, further increasing the number of strong ones participating in the redox reactions. Encouraged by the greatly improved charge utilization, significantly enhanced photocatalytic and piezophotocatalytic activities in CH4 , CO, and O2 production are achieved by the designed stacked catalyst. This work highlights the importance in strengthening the necessary charge recombination in S-scheme heterojunctions and presents an efficient and novel strategy to synergize photocatalysis and piezocatalysis for renewable fuels and value-added chemicals production.
Collapse
Affiliation(s)
- Shihong Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Zengrong Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Guodong Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yanbo Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yiyi Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuxian Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yuling Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Song Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| |
Collapse
|
8
|
Zhao B, Shakouri M, Feng R, Regier T, Zeng Y, Zhang Y, Zhang J, Wang L, Luo JL, Fu XZ. Crystallization Engineering of CuNi 2 S 4 Ultra-Fine Nanocrystals with Optimized Band Structures for Efficient Photocatalytic Pollutant Degradation and Hydrogen Production. SMALL METHODS 2023; 7:e2201612. [PMID: 37452235 DOI: 10.1002/smtd.202201612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/26/2023] [Indexed: 07/18/2023]
Abstract
The mono-dispersed cubic siegenite CuNi2 S4 ultra-fine (≈5 nm) nanocrystals are fabricated through crystallization engineering under hot injection. The strong hydroxylation on mostly exposed CuNi2 S4 (220) surface leads to the formation of multi-valence (Cu+ , Cu2+ , Ni2+ , Ni3+ ) species with unsaturated hybridization and coordination micro-environments, which can induce rich redox reactions to optimize interfacial kinetics for the adsorbed reaction intermediates. The as-synthesized CuNi2 S4 nanocrystals with ultra-small particle size and the characteristics of being highly dispersed can increase specific surface area and hydroxylated active sites, which considerably contribute to the improvement of photocatalytic activities. Experimental and theoretical studies indicate that the CuNi2 S4 with unique surface condition can properly modulate the charge density distribution and the electronic band structure, thus achieving an optimal band gap for enhancing visible light absorption. Additionally, the strong hydroxylation on CuNi2 S4 (220) surface can not only make the photocatalytic process stable in alkaline environment but also bring about an impurity level between conduction and valence band, which facilitates the separation of photo-induced charge carriers by suppressing the rapid re-combination of exited electrons and holes. The optimization of band structure should be the intrinsic reason for the efficient photocatalytic pollutant degradation and hydrogen production under visible light illumination.
Collapse
Affiliation(s)
- Bin Zhao
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Mohsen Shakouri
- Canadian Light Source Inc., Saskatoon, Saskatchewan, S7N 0X4, Canada
| | - Renfei Feng
- Canadian Light Source Inc., Saskatoon, Saskatchewan, S7N 0X4, Canada
| | - Tom Regier
- Canadian Light Source Inc., Saskatoon, Saskatchewan, S7N 0X4, Canada
| | - Yuxiang Zeng
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu Zhang
- Instrumental Analysis Center of Shenzhen University (Lihu Campus), Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Jiujun Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Wang
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
9
|
Banoo M, Kaur J, Sah AK, Roy RS, Bhakar M, Kommula B, Sheet G, Gautam UK. Universal Piezo-Photocatalytic Wastewater Treatment on Realistic Pollutant Feedstocks by Bi 4TaO 8Cl: Origin of High Efficiency and Adjustable Synergy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37379232 DOI: 10.1021/acsami.3c04959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Clean water is a fundamental human right but millions struggle for it daily. Herein, we demonstrate a new piezo-photocatalyst with immense structural diversity for universal wastewater decontamination. Single-crystalline Bi4TaO8Cl nanoplates with exposed piezoelectric facets exhibit visible-light response, piezoelectric behavior with coercive voltages of ±5 V yielding 0.35% crystal deformation, and pressure-induced band-bending of >2.5 eV. Using five common contaminants of textile and pharmaceutical industries, we show that the nanoplates can mineralize them in all piezocatalytic, photocatalytic, and piezo-photocatalytic approaches with efficiencies higher than most catalysts developed for just one contaminant. Their efficiencies for feedstocks differing over 2 orders of magnitude in concentrations, the highest to date, are also demonstrated to simulate real-life situations. These extensive studies established that combining piezocatalytic and photocatalytic approaches can lead to a tremendous synergy exceeding >45%. The origin of synergy has been illustrated for the first time using band-bending models and improved charge transfer from valence and conduction band electronic surfaces. We further quantified synergy across reactants, concentrations, and ultrasonic frequency and power to demonstrate their versatility and unpredictability. Finally, seven parameters that contribute to synergy but create unpredictability have been identified for the rational design of piezo-photocatalysts for wastewater treatment.
Collapse
Affiliation(s)
- Maqsuma Banoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar 140306, Punjab, India
| | - Jaspreet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar 140306, Punjab, India
| | - Arjun Kumar Sah
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar 140306, Punjab, India
| | - Raj Sekhar Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar 140306, Punjab, India
| | - Monika Bhakar
- Department of Physical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar 140306, Punjab, India
| | - Bramhaiah Kommula
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar 140306, Punjab, India
| | - Goutam Sheet
- Department of Physical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar 140306, Punjab, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar 140306, Punjab, India
| |
Collapse
|
10
|
Deng G, Kang X, Yang Y, Wang L, Liu G. Skin B/N-doped anatase TiO 2 {001} nanoflakes for visible-light photocatalytic water oxidation. J Colloid Interface Sci 2023; 649:140-147. [PMID: 37348333 DOI: 10.1016/j.jcis.2023.06.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The limited visible-light-responsive photoactivities of most doped wide-bandgap photocatalysts with widened absorption range have long been the obstacles for the efficient conversion of solar energy to chemical energy by photocatalysis. The weak transport ability of visible-light-induced low-energy charge carriers, and numerous recombination centers arising from the energy-band modifiers along the transport path are two major factors responsible for such a mismatch. A potential solution is to shorten the transport path of photo-induced charges in well-modulated light absorbers with low-dimensional structure and the spatially concentrated dopants underneath their surfaces. As a proof of concept, skin B/N-doped red anatase TiO2 {001} nanoflakes with the absorption edge up to 675 nm were synthesized in this study. Experimental results revealed that boron dopants in the TiO2 nanoflakes from the hydrolysis of nanosized TiB2 played a crucial role in controlling nitrogen doping in the surface layer of the nanoflakes. As visible light excitation occurs at the surface layer, the photons can be sufficiently absorbed by the formed energy levels at the surface layers, and the photogenerated charge carriers can effectively migrate to the surface, thus leading to efficient visible-light-responsive photocatalytic oxygen evolution activity from water oxidation.
Collapse
Affiliation(s)
- Guoqiang Deng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Xiangdong Kang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Yongqiang Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China.
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and AIBN, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Gang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
11
|
Ziarati A, Zhao J, Afshani J, Kazan R, Perez Mellor A, Rosspeintner A, McKeown S, Bürgi T. Advanced Catalyst for CO 2 Photo-Reduction: From Controllable Product Selectivity by Architecture Engineering to Improving Charge Transfer Using Stabilized Au Clusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207857. [PMID: 36895069 DOI: 10.1002/smll.202207857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Indexed: 06/15/2023]
Abstract
Despite enormous progress and improvement in photocatalytic CO2 reduction reaction (CO2 RR), the development of photocatalysts that suppress H2 evolution reaction (HER), during CO2 RR, remains still a challenge. Here, new insight is presented for controllable CO2 RR selectivity by tuning the architecture of the photocatalyst. Au/carbon nitride with planar structure (p Au/CN) showed high activity for HER with 87% selectivity. In contrast, the same composition with a yolk@shell structure (Y@S Au@CN) exhibited high selectivity of carbon products by suppressing the HER to 26% under visible light irradiation. Further improvement for CO2 RR activity was achieved by a surface decoration of the yolk@shell structure with Au25 (PET)18 clusters as favorable electron acceptors, resulting in longer charge separation in Au@CN/Auc Y@S structure. Finally, by covering the structure with graphene layers, the designed catalyst maintained high photostability during light illumination and showed high photocatalytic efficiency. The optimized Au@CN/Auc /G Y@S structure displays high photocatalytic CO2 RR selectivity of 88%, where the CO and CH4 generations during 8 h are 494 and 198 µmol/gcat., respectively. This approach combining architecture engineering and composition modification provides a new strategy with improved activity and controllable selectivity toward targeting applications in energy conversion catalysis.
Collapse
Affiliation(s)
- Abolfazl Ziarati
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Jiangtao Zhao
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Jafar Afshani
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Rania Kazan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Ariel Perez Mellor
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Siobhan McKeown
- Deparment of Quantum Matter Physics, Laboratory of Advanced Technology, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| |
Collapse
|
12
|
Asim M, Maryam B, Zhang S, Sajid M, Kurbanov A, Pan L, Zou JJ. Synergetic effect of Au nanoparticles and transition metal phosphides for enhanced hydrogen evolution from ammonia-borane. J Colloid Interface Sci 2023; 638:14-25. [PMID: 36731215 DOI: 10.1016/j.jcis.2023.01.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
The hydrogen evolution from ammonia borane is intriguing but challenging due to its sluggish kinetics. In this regard, the gold nanoparticles amalgamation with metal phosphides is speculated to be more efficient catalysts. Here, the catalysts Au/Ni2P and Au/CoP with the high synergetic effect of Au nanoparticles and metal phosphides were synthesized for ammonia borane hydrolysis. The activity of Au/Ni2P increases 4.8-fold (i.e., 0.08 to 0.40 L∙h-1) compared to pristine Ni2P, and the activity of Au/CoP increases 1.7-fold (i.e., 0.74 to 1.27 L∙h-1) compared to pristine CoP. This reveals that the synergetic effect of Auδ+ and (Ni2P) δ- is stronger than Auδ+ and (CoP) δ- which is manifested by XPS analysis. The kinetics exposes that the activation energy of Au/Ni2P (45.28 kJ∙mole-1) is greater than Au/CoP (31.45 kJ∙mole-1) and the TOF of Au/Ni2P is less than Au/CoP. This research work presents an effective approach for producing active sites of Auδ+ and (Ni2P & CoP) δ- for ammonia borane hydrolysis to enhance the H2 evolution rate.
Collapse
Affiliation(s)
- Muhammad Asim
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Bushra Maryam
- School of Environmental Sciences and Engineering, Tianjin University, Tianjin 300072, China
| | - Shuguang Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, Sichuan China
| | - Alibek Kurbanov
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
13
|
Mo W, Fan Z, Zhong S, Chen W, Hu L, Zhou H, Zhao W, Lin H, Ge J, Chen J, Bai S. Embedding Plasmonic Metal into Heterointerface of MOFs-Encapsulated Semiconductor Hollow Architecture for Boosting CO 2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207705. [PMID: 36710245 DOI: 10.1002/smll.202207705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Coupling hollow semiconductor with metal-organic frameworks (MOFs) holds great promise for constructing high-efficient CO2 photoreduction systems. However, energy band mismatch between them makes it difficult to exert their advantages to maximize the overall photocatalytic efficiency, since that the blockage of desirable interfacial charge transfer gives rise to the enrichment of photoelectrons and CO2 molecules on the different locations. Herein, an interfacial engineering is presented to overcome this impediment, based on the insertion of plasmonic metal into the heterointerfaces between them, forming a stacked semiconductor/metal@MOF photocatalyst. Experimental observations and theoretical simulations validate the critical roles of embedded Au in maneuvering the charge separation/transfer and surface reaction: (i) bridges the photoelectron transfer from hollow CdS (H-CdS) to ZIF-8; (ii) produces hot electrons and shifts them to ZIF-8; (iii) induces the formation of ZIF-8 defects in promoting the CO2 adsorption/activation and transformation to CO with low energy barriers. Consequently, the as-prepared H-CdS/Au@ZIF-8 with optimal ZIF-8 thickness exhibits distinctly boosted activity and superb selectivity in CO production as compared with H-CdS@ZIF-8 and other counterparts. This work provides protocols to take full advantages of components involved for enhanced solar-to-chemical energy conversion efficiency of hybrid artificial photosynthetic systems through rationally harnessing the charge transfer between them.
Collapse
Affiliation(s)
- Weihao Mo
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Zhixin Fan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuxian Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Wenbin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Lingxuan Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Hao Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Wei Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Jing Ge
- School of Physics and Information Engineering, Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Song Bai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| |
Collapse
|
14
|
Yang G, Wang S, Wu Y, Zhou H, Zhao W, Zhong S, Liu L, Bai S. Spatially Separated Redox Cocatalysts on Ferroelectric Nanoplates for Improved Piezophotocatalytic CO 2 Reduction and H 2O Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36897222 DOI: 10.1021/acsami.2c20685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Utilizing solar and mechanical vibration energy for catalytic CO2 reduction and H2O oxidation is emerging as a promising way to simultaneously generate renewable energy and mitigate climate change, making it possible to integrate two energy resources into a reaction system for artificial piezophotosynthesis. However, the practical applications are hindered by undesirable charge recombination and sluggish surface reaction in the photocatalytic and piezocatalytic processes. This study proposes a dual cocatalyst strategy to overcome these obstacles and improve the piezophotocatalytic performance of ferroelectrics in overall redox reactions. With the photodeposition of AuCu reduction and MnOx oxidation cocatalysts on oppositely poled facets of PbTiO3 nanoplates, band bending occurs along with the formation of built-in electric fields on the semiconductor-cocatalyst interfaces, which, together with an intrinsic ferroelectric field, piezoelectric polarization field, and band tilting in the bulk of PbTiO3, provide strong driving forces for the directional drift of piezo- and photogenerated electrons and holes toward AuCu and MnOx, respectively. Besides, AuCu and MnOx enrich the active sites for surface reactions, significantly reducing the rate-determining barrier for CO2-to-CO and H2O-to-O2 transformation, respectively. Benefiting from these features, AuCu/PbTiO3/MnOx delivers remarkably improved charge separation efficiencies and significantly enhanced piezophotocatalytic activities in CO and O2 generation. This strategy opens a door for the better coupling of photocatalysis and piezocatalysis to promote the conversion of CO2 with H2O.
Collapse
Affiliation(s)
- Guodong Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Shihong Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yujie Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hao Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Wei Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Shuxian Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Lichun Liu
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Song Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|