1
|
Chen J, Zhou T, He C, Luo Z, Shi C, Zhang L, Zhang Q, He C, Ren X. p-Block metal atom-induced spin state transition of Fe-N-C catalysts for efficient oxygen reduction. NANOSCALE 2024. [PMID: 39485106 DOI: 10.1039/d4nr03663h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
A deep understanding of the role of spin configurations of Fe-N-C catalysts in the adsorption and desorption of oxygen intermediates during ORRs is critical for the development of new catalysts for the ORR. Herein, we successfully implanted p-block metal single sites (SnN4, SbN4) into the Fe-N-C system to vary the spin states of Fe species and investigated the ORR performance of active metal centers with varying effective magnetic moments. Through a combination of zero-field cooling (ZFC) temperature-dependent magnetic susceptibility measurements and DFT calculations, we successfully established correlations between the spin state and ORR activity. Magnetic analysis reveals that the p-block metal catalytic sites can effectively induce a low-to-high (or medium) spin state transition of Fe centers. Consequently, the 3d orbital electrons in Fe,M-N-C catalysts penetrate the antibonding π-orbitals of oxygen more easily, thus optimizing the adsorption/desorption of key oxygen intermediates on Fe-N-C catalysts. As a result, the optimized Fe,M-N-C catalyst exhibits a half-wave potential of 0.97 V in a 0.1 M KOH electrolyte, as well as higher durability than conventional Pt/C catalysts. Moreover, the Fe,M-N-C catalysts show encouraging performance in a rechargeable Zn-air battery with high power density and long-term cyclability, indicating the practical applicability of these Fe,M-N-C catalysts.
Collapse
Affiliation(s)
- Jiana Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Tingyi Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Changjie He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Zhaoyan Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Chuan Shi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| |
Collapse
|
2
|
Sun B, Lv H, Xu Q, Tong P, Qiao P, Tian H, Xia H. Island-in-Sea Structured Pt 3Fe Nanoparticles-in-Fe Single Atoms Loaded in Carbon Materials as Superior Electrocatalysts toward Alkaline HER and Acidic ORR. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400240. [PMID: 38593333 DOI: 10.1002/smll.202400240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Indexed: 04/11/2024]
Abstract
In this work, Pt3Fe nanoparticles (Pt3Fe NPs) with the ordered internal structure and Pt-rich shells surrounded by plenty of Fe single atoms (Fe SAs) as active species (Pt3Fe NP-in-Fe SA) loaded in the carbon materials are successfully fabricated, which are abbreviated as island-in-sea structured (IISS) Pt3Fe NP-in-Fe SA catalysts. Moreover, the synergistic effect of O-bridging between Pt3Fe NPs and Fe SAs, and the ordered internal structured Pt3Fe NPs with Pt-rich shells of an optimal thickness contributes to the achievement of the local acidic environments on the surfaces of Pt3Fe NPs in the alkaline hydrogen evolution reaction (HER) and the enhancement of the desorption rate of *OH intermediate in the acidic oxygen reduction reaction (ORR). In addition, the electronic interactions between Pt3Fe NPs and dispersed Fe SAs cannot only provide efficient electrons transfer, but also prevent the aggregation and dissolution of Pt3Fe NPs. Furthermore, the overpotential and the half wave potential of the as-prepared IISS Pt3Fe NP-in-Fe SA catalysts toward the alkaline HER and toward the acidic ORR are 8 mV at a current density of 10 mA cm-2 and 0.933 V, respectively, which is 29 lower and 86 mV higher than those (37 mV and 0.847 V) of commercial Pt/C catalysts.
Collapse
Affiliation(s)
- Benteng Sun
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hang Lv
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Qi Xu
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Peiran Tong
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Panzhe Qiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - He Tian
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haibing Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
3
|
Guo Y, Zheng F, Wang T, Liu X, Tian X, Qu K, Wang L, Li R, Kang W, Li Z, Li H. Construction of Pd-Te Intermetallic Compounds to Achieve Ultrastable Oxygen Reduction Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36363-36372. [PMID: 38954684 DOI: 10.1021/acsami.4c05655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Palladium (Pd)-transition metal alloys have the potential to regulate the intermediate surface adsorption strength in oxygen reduction reactions (ORR), making them a promising substitute for platinum-based catalysts. Nonetheless, prolonged electrochemical cycling can lead to the depletion of transition metals, resulting in structural degradation and poor durability. Herein, the synthesis of alloy catalysts (Pd25%Te75%) containing Pd and the metalloid tellurium (Te) through a one-step reduction method is reported. Characterizations of powder X-ray photoelectron spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy demonstrated both uniform dispersion and strong binding force of elements within the PdTe alloy, along with providing crystallographic details of associated compounds. Based on density functional theory calculations, PdTe had a more negative d-band center than that of pure Pd, which reduces the adsorption capacity between active sites and intermediates in the ORR, and therefore enhances reaction kinetics. The Pd25%Te75% exhibited excellent ORR activity, and its onset and half-wave potentials were ∼0.98 and ∼0.90 V, respectively, at 1600 rpm within the O2-saturated 1.0 M KOH. Significantly, accelerated durability tests achieved exceptional stability, and half-wave potential just decayed by 4 mV after 30000 consecutive cycles. Moreover, this study aims to promote the preparation of Pd and metalloid alloys for other energy conversion applications.
Collapse
Affiliation(s)
- Yajie Guo
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Fuxian Zheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Ting Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xinyang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiaotan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Konggang Qu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Lei Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Rui Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Wenjun Kang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Zongge Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Haibo Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
4
|
Wu L, Wu Q, Han Y, Zhang D, Zhang R, Song N, Wu X, Zeng J, Yuan P, Chen J, Du A, Huang K, Yao X. Strengthening the Synergy between Oxygen Vacancies in Electrocatalysts for Efficient Glycerol Electrooxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401857. [PMID: 38594018 DOI: 10.1002/adma.202401857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Defect-engineered bimetallic oxides exhibit high potential for the electrolysis of small organic molecules. However, the ambiguity in the relationship between the defect density and electrocatalytic performance makes it challenging to control the final products of multi-step multi-electron reactions in such electrocatalytic systems. In this study, controllable kinetics reduction is used to maximize the oxygen vacancy density of a Cu─Co oxide nanosheet (CuCo2O4 NS), which is used to catalyze the glycerol electrooxidation reaction (GOR). The CuCo2O4-x NS with the highest oxygen-vacancy density (CuCo2O4-x-2) oxidizes C3 molecules to C1 molecules with selectivity of almost 100% and a Faradaic efficiency of ≈99%, showing the best oxidation performance among all the modified catalysts. Systems with multiple oxygen vacancies in close proximity to each other synergistically facilitate the cleavage of C─C bonds. Density functional theory calculations confirm the ability of closely spaced oxygen vacancies to facilitate charge transfer between the catalyst and several key glycolic-acid (GCA) intermediates of the GOR process, thereby facilitating the decomposition of C2 intermediates to C1 molecules. This study reveals qualitatively in tuning the density of oxygen vacancies for altering the reaction pathway of GOR by the synergistic effects of spatial proximity of high-density oxygen vacancies.
Collapse
Affiliation(s)
- Liyun Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qilong Wu
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Yun Han
- School of Engineering and Built Environment, Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland, 4111, Australia
| | - Dongdong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Rongrong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Nan Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaofeng Wu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Pei Yuan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Jun Chen
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001, Australia
| | - KeKe Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiangdong Yao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- School of Advanced Energy and IGCME, Sun Yat-Sen University (Shenzhen), Shenzhen, Guangdong, 518107, P. R. China
| |
Collapse
|
5
|
Zhang P, Liu Y, Liu S, Zhou L, Wu X, Han G, Liu T, Sun K, Li B, Jiang J. Precise Design and Modification Engineering of Single-Atom Catalytic Materials for Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305782. [PMID: 37718497 DOI: 10.1002/smll.202305782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Indexed: 09/19/2023]
Abstract
Due to their unique electronic and structural properties, single-atom catalytic materials (SACMs) hold great promise for the oxygen reduction reaction (ORR). Coordinating environmental and engineering strategies is the key to improving the ORR performance of SACMs. This review summarizes the latest research progress and breakthroughs of SACMs in the field of ORR catalysis. First, the research progress on the catalytic mechanism of SACMs acting on ORR is reviewed, including the latest research results on the origin of SACMs activity and the analysis of pre-adsorption mechanism. The study of the pre-adsorption mechanism is an important breakthrough direction to explore the origin of the high activity of SACMs and the practical and theoretical understanding of the catalytic process. Precise coordination environment modification, including in-plane, axial, and adjacent site modifications, can enhance the intrinsic catalytic activity of SACMs and promote the ORR process. Additionally, several engineering strategies are discussed, including multiple SACMs, high loading, and atomic site confinement. Multiple SACMs synergistically enhance catalytic activity and selectivity, while high loading can provide more active sites for catalytic reactions. Overall, this review provides important insights into the design of advanced catalysts for ORR.
Collapse
Affiliation(s)
- Pengxiang Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Limin Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Guosheng Han
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| |
Collapse
|
6
|
Qi C, Yang H, Sun Z, Wang H, Xu N, Zhu G, Wang L, Jiang W, Yu X, Li X, Xiao Q, Qiu P, Luo W. Modulating Electronic Structures of Iron Clusters through Orbital Rehybridization by Adjacent Single Copper Sites for Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2023; 62:e202308344. [PMID: 37485998 DOI: 10.1002/anie.202308344] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
The atom-cluster interaction has recently been exploited as an effective way to increase the performance of metal-nitrogen-carbon catalysts for oxygen reduction reaction (ORR). However, the rational design of such catalysts and understanding their structure-property correlations remain a great challenge. Herein, we demonstrate that the introduction of adjacent metal (M)-N4 single atoms (SAs) could significantly improve the ORR performance of a well-screened Fe atomic cluster (AC) catalyst by combining density functional theory (DFT) calculations and experimental analysis. The DFT studies suggest that the Cu-N4 SAs act as a modulator to assist the O2 adsorption and cleavage of O-O bond on the Fe AC active center, as well as optimize the release of OH* intermediates to accelerate the whole ORR kinetic. The depositing of Fe AC with Cu-N4 SAs on nitrogen doped mesoporous carbon nanosheet are then constructed through a universal interfacial monomicelles assembly strategy. Consistent with theoretical predictions, the resultant catalyst exhibits an outstanding ORR performance with a half-wave potential of 0.92 eV in alkali and 0.80 eV in acid, as well as a high power density of 214.8 mW cm-2 in zinc air battery. This work provides a novel strategy for precisely tuning the atomically dispersed poly-metallic centers for electrocatalysis.
Collapse
Affiliation(s)
- Chunhong Qi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Haoyu Yang
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Na Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Guihua Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Xiqian Yu
- Beijing Advanced Innovation Center for Materials, Genome Engineering, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Qi Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Pengpeng Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
7
|
Srinivas K, Liu D, Ma F, Chen A, Zhang Z, Wu Y, Wu Q, Chen Y. Defect-Engineered Mesoporous Undoped Carbon Nanoribbons for Benchmark Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301589. [PMID: 37093203 DOI: 10.1002/smll.202301589] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
For large-scale fuel cell applications, it is significant to replace expensive Pt-based oxygen reduction reaction (ORR) electrocatalysts with nonprecious metal- or metal-free carbon-based catalysts with high activity. However, it is still challenging to deeply understand the role of intrinsic defects and the origin of ORR activity in pure nanocarbon. Therefore, a novel self-assembly and a pyrolysis strategy to fabricate defect-rich mesoporous carbon nanoribbons are presented. Due to the effective regulation of nanoarchitecture, a vast number of defective catalytic sites (edge defects and holes) are exposed, which thereby enhances the electron transfer kinetics and catalytic activity. Such undoped nanoribbons display a large half-wave potential of 0.837 V, excellent long-term stability, and exceptional methanol tolerance, surpassing the most undoped ORR catalysts and the commercial Pt/C (20 wt.%) catalyst. Structural characterizations and density functional theory (DFT) calculations confirm that the zigzag edge defects and the armchair pentagon at the hole defect are responsible for outstanding ORR performance.
Collapse
Affiliation(s)
- Katam Srinivas
- School of Integrated Circuit Science and Engineering and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Dawei Liu
- School of Integrated Circuit Science and Engineering and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fei Ma
- School of Integrated Circuit Science and Engineering and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Anran Chen
- School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Ziheng Zhang
- School of Integrated Circuit Science and Engineering and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yu Wu
- School of Integrated Circuit Science and Engineering and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Qi Wu
- College of Science and Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa, 850000, P. R. China
| | - Yuanfu Chen
- School of Integrated Circuit Science and Engineering and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|