1
|
Quan J, Yan H, Periyasami G, Li H. A Visible-Light Regulated ATP Transport in Retinal-Modified Pillar[6]arene Layer-by-Layer Self-Assembled Sub-Nanochannel. Chemistry 2024; 30:e202401045. [PMID: 38693094 DOI: 10.1002/chem.202401045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Natural light-responsive rhodopsins play a critical role in visual conversion, signal transduction, energy transmission, etc., which has aroused extensive interest in the past decade. Inspired by these gorgeous works of living beings, scientists have constructed various biomimetic light-responsive nanochannels to mimic the behaviors of rhodopsins. However, it is still challenging to build stimuli-responsive sub-nanochannels only regulated by visible light as the rhodopsins are always at the sub-nanometer level and regulated by visible light. Pillar[6]arenes have an open cavity of 6.7 Å, which can selectively recognize small organic molecules. They can be connected to ions of ammonium or carboxylate groups on the rims. Therefore, we designed and synthesized the amino and carboxyl-derived side chains of pillar[6]arenes with opposite charges. The sub-nanochannels were constructed through the electrostatic interaction of layer-by-layer self-assembled amino and carboxyl-derived pillar[6]arenes. Then, the natural chromophore of the retinal with visible light-responsive performance was modified on the upper edge of the sub-nanochannel to realize the visible light switched on and off. Finally, we successfully constructed a visible light-responsive sub-nanochannel, providing a novel method for regulating the selective transport of energy-donating molecules of ATP.
Collapse
Affiliation(s)
- Jiaxin Quan
- Department of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Hewei Yan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, P.R. China
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Haibing Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
2
|
Laucirica G, Toum-Terrones Y, Cayón VM, Toimil-Molares ME, Azzaroni O, Marmisollé WA. Advances in nanofluidic field-effect transistors: external voltage-controlled solid-state nanochannels for stimulus-responsive ion transport and beyond. Phys Chem Chem Phys 2024; 26:10471-10493. [PMID: 38506166 DOI: 10.1039/d3cp06142f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Ion channels, intricate protein structures facilitating precise ion passage across cell membranes, are pivotal for vital cellular functions. Inspired by the remarkable capabilities of biological ion channels, the scientific community has ventured into replicating these principles in fully abiotic solid-state nanochannels (SSNs). Since the gating mechanisms of SSNs rely on variations in the physicochemical properties of the channel surface, the modification of their internal architecture and chemistry constitutes a powerful strategy to control the transport properties and, consequently, render specific functionalities. In this framework, both the design of the nanofluidic platform and the subsequent selection and attachment of different building blocks gain special attention. Similar to biological ion channels, functional SSNs offer the potential to finely modulate ion transport in response to various stimuli, leading to innovations in a variety of fields. This comprehensive review delves into the intricate world of ion transport across stimuli-responsive SSNs, focusing on the development of external voltage-controlled nanofluidic devices. This kind of field-effect nanofluidic technology has attracted special interest due to the possibility of real-time reconfiguration of the ion transport with a non-invasive strategy. These properties have found interesting applications in drug delivery, biosensing, and nanoelectronics. This document will address the fundamental principles of ion transport through SSNs and the construction, modification, and applications of external voltage-controlled SSNs. It will also address future challenges and prospects, offering a comprehensive perspective on this evolving field.
Collapse
Affiliation(s)
- G Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Y Toum-Terrones
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - V M Cayón
- Department of Materials- and Geosciences, Technical University of Darmstadt, Darmstadt, Germany
| | - M E Toimil-Molares
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Department of Materials- and Geosciences, Technical University of Darmstadt, Darmstadt, Germany
| | - O Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - W A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| |
Collapse
|