1
|
Vardin AP, Aksoy F, Yesiloz G. A Novel Acoustic Modulation of Oscillating Thin Elastic Membrane for Enhanced Streaming in Microfluidics and Nanoscale Liposome Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403463. [PMID: 39324290 DOI: 10.1002/smll.202403463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Liposomes are widely utilized in therapeutic nanosystems as promising drug carriers for cancer treatment, which requires a meticulous synthesis approach to control the nanoprecipitation process. Acoustofluidic platforms offer a favorable synthesis environment by providing robust agitation and rapid mixing. Here, a novel high-throughput acoustofluidic micromixer is presented for a solvent and solvent-free synthesis of ultra-small and size-tunable liposomes. The size-tunability is achieved by incorporating glycerol as a new technique into the synthesis reagents, serving as a size regulator. The proposed device utilizes the synergistic effects of vibrating trapped microbubbles and an oscillating thin elastic membrane to generate vigorous acoustic microstreaming. The working principle and mixing mechanism of the device are explored numerically and experimentally. The platform exhibits remarkable mixing efficacy for aqueous and viscous solutions at flow rates up to 8000 µL/h, which makes it unique for high-throughput liposome formation and preventing aggregation. As a proof of concept, this study investigates the impact of phospholipid type and concentration, flow rate, and glycerol on the size and size distribution of liposomes. The results reveal a significant size reduction, from ≈900 nm to 40 nm, achieved by merely introducing 75% glycerol into the synthesis reagents, highlighting an innovative approach toward size-tunable liposomes.
Collapse
Affiliation(s)
- Ali Pourabdollah Vardin
- National Nanotechnology Research Center (UNAM)- Bilkent University, Cankaya-Ankara, 06800, Türkiye
- Institute of Material Science and Nanotechnology, Bilkent University, Cankaya-Ankara, 06800, Türkiye
| | - Faruk Aksoy
- National Nanotechnology Research Center (UNAM)- Bilkent University, Cankaya-Ankara, 06800, Türkiye
- Institute of Material Science and Nanotechnology, Bilkent University, Cankaya-Ankara, 06800, Türkiye
| | - Gurkan Yesiloz
- National Nanotechnology Research Center (UNAM)- Bilkent University, Cankaya-Ankara, 06800, Türkiye
- Institute of Material Science and Nanotechnology, Bilkent University, Cankaya-Ankara, 06800, Türkiye
| |
Collapse
|
2
|
Yan B, Li Y, He S. Aptamer-mediated therapeutic strategies provide a potential approach for cancer. Int Immunopharmacol 2024; 136:112356. [PMID: 38820957 DOI: 10.1016/j.intimp.2024.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The treatment of tumors still faces considerable challenges. While conventional treatments such as surgery, chemotherapy, and radiation therapy provide some curative effects, their side effects and limitations highlight the importance of finding more precise treatment strategies. Aptamers have become an important target molecule in the field of drug delivery systems due to their good affinity and targeting, and they have gradually become an important link from basic research to clinical application. In this paper, we discussed the latest progress of aptamer-mediated nanodrugs, as well as aptamer-mediated photodynamic therapy, photothermal therapy, and immunotherapy strategies for tumor treatment, and explored the possibility of aptamer-mediated therapy for accurate tumor treatment. The purpose of this review is to provide novel insights for treating tumors with aptamer-mediated therapies by summarizing these innovative strategies, thereby ultimately enhancing the therapeutic efficacy for cancer patients.
Collapse
Affiliation(s)
- Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
3
|
Li Y, Sun Q, Hao L, Shan H, Jiang Z, Wang Y, Chen Z, Zhu W, Zhao S. Liposomes Loaded with 5-Fluorouracil Can Improve the Efficacy in Pathological Scars. Int J Nanomedicine 2024; 19:7353-7365. [PMID: 39050869 PMCID: PMC11268756 DOI: 10.2147/ijn.s466221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Pathological scars, such as hypertrophic scars and keloids, are characterized by the proliferation of fibroblasts and the deposition of collagen that often cause pruritus, pain, and disfigurement. Due to their high incidence and deformity, pathological scars have resulted in severe physical and psychological trauma for patients. Intralesional injection of 5-fluorouracil (5-Fu) is a recommended option for treating pathological scars. However, the efficacy of 5-Fu injection was limited and unstable due to limited drug penetration and short retention time. Methods Liposomes are promising carriers that have advantages, such as high biocompatibility, controlled release property, and enhanced clinical efficacy. Here, we constructed a transdermal 5-Fu-loaded liposome (5-Fu-Lip) to provide a more effective and safer modality to scar treatment. Results Compared to 5-Fu, 5-Fu-Lip showed superior ability in inhibiting primary keloid fibroblasts proliferation, migration, and collagen deposition, and also significantly inhibited human umbilical vein endothelial cells (HUVECs) proliferation and microvessel construction. In vivo experiments demonstrated that 5-Fu-Lip can significantly reduce the severity of hypertrophic scars in a rabbit ear wounding model. Discussion 5-Fu-Lip provides a promising strategy to improve drug efficacy, which has great potential in the treatment of pathological scars.
Collapse
Affiliation(s)
- Yixin Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Qi Sun
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- School of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Lingjia Hao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, 410083, People’s Republic of China
| | - Han Shan
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- School of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Zixi Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Ying Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Zeyu Chen
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- School of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| |
Collapse
|
4
|
Shan H, Yu N, Chen M, Sun Q, Sun X, Du C, Shang W, Li Z, Wei X, Lin Q, Jiang Z, Chen Z, Zhu B, Zhao S, Chen Z, Chen X. Cavitation-on-a-Chip Enabled Size-Specific Liposomal Drugs for Selective Pharmacokinetics and Pharmacodynamics. NANO LETTERS 2024; 24:8151-8161. [PMID: 38912914 DOI: 10.1021/acs.nanolett.4c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The size of liposomal drugs has been demonstrated to strongly correlate with their pharmacokinetics and pharmacodynamics. While the microfluidic method successfully achieves the production of liposomes with well-controlled sizes across various buffer/lipid flow rate ratio (FRR) settings, any adjustments to the FRR inevitably influence the concentration, encapsulation efficiency (EE), and stability of liposomal drugs. Here we describe a controllable cavitation-on-a-chip (CCC) strategy that facilitates the precise regulation of liposomal drug size at any desired FRR. The CCC-enabled size-specific liposomes exhibited striking differences in uptake and biodistribution behaviors, thereby demonstrating distinct antitumor efficacy in both tumor-bearing animal and melanoma patient-derived organoid (PDO) models. Intriguingly, as the liposome size decreased to approximately 80 nm, the preferential accumulation of liposomal drugs in the liver transitioned to a predominant enrichment in the kidneys. These findings underscore the considerable potential of our CCC approach in influencing the pharmacokinetics and pharmacodynamics of liposomal nanomedicines.
Collapse
Affiliation(s)
- Han Shan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Nianzhou Yu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| | - Maike Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| | - Qi Sun
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xin Sun
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Changsheng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wansong Shang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhaoxi Li
- The School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Xiongwei Wei
- The School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Qibo Lin
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Zixi Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| | - Ziyan Chen
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Benpeng Zhu
- School of Integrated Circuits, Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| | - Zeyu Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| |
Collapse
|
5
|
Sameer Khan M, Gupta G, Alsayari A, Wahab S, Sahebkar A, Kesharwani P. Advancements in liposomal formulations: A comprehensive exploration of industrial production techniques. Int J Pharm 2024; 658:124212. [PMID: 38723730 DOI: 10.1016/j.ijpharm.2024.124212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Liposomes are nanosized, spherical vesicles consisting of an aqueous core encircled by one or more phospholipid bilayer shells. Liposomes have found extensive use in numerous biomedicine and nanomedicine applications due to their excellent biocompatibility, adaptable chemical composition, ease of preparation, and diverse structural characteristics. These applications include nanocarriers for drug delivery, immunoassays, nutraceuticals, tissue engineering, clinical diagnostics, and theranostics formulations. These applications stimulated significant efforts toward scaling up formation processes in anticipation of appropriate industrial advancement. Despite the advancements in conventional methods and the emergence of new approaches for liposome production, their inherent susceptibility to chemical and mechanical influences contributes to critical challenges, including limited colloidal stability and decreased efficiency in encapsulating cargo molecules. With this context, the current review provides brief insights into liposomes conventional and novel industrial production techniques. With a special focus on the structural parameters, and pivotal elements influencing the synthesis of an appropriate and stable formulation, followed by the various regulatory aspects of industrial production.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
6
|
Wang C, Lan X, Zhu L, Wang Y, Gao X, Li J, Tian H, Liang Z, Xu W. Construction Strategy of Functionalized Liposomes and Multidimensional Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309031. [PMID: 38258399 DOI: 10.1002/smll.202309031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/30/2023] [Indexed: 01/24/2024]
Abstract
Liposomes are widely used in the biological field due to their good biocompatibility and surface modification properties. With the development of biochemistry and material science, many liposome structures and their surface functional components have been modified and optimized one by one, pushing the liposome platform from traditional to functionalized and intelligent, which will better satisfy and expand the needs of scientific research. However, a main limiting factor effecting the efficiency of liposomes is the complicated environmental conditions in the living body. Currently, in order to overcome the above problem, functionalized liposomes have become a very promising strategy. In this paper, binding strategies of liposomes with four main functional elements, namely nucleic acids, antibodies, peptides, and stimuli-responsive motif have been summarized for the first time. In addition, based on the construction characteristics of functionalized liposomes, such as drug-carrying, targeting, long-circulating, and stimulus-responsive properties, a comprehensive overview of their features and respective research progress are presented. Finally, the paper critically presents the limitations of these functionalized liposomes in the current applications and also prospectively suggests the future development directions, aiming to accelerate realization of their industrialization.
Collapse
Affiliation(s)
- Chengyun Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Xinyue Lan
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yanhui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Xinru Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
| | - Jie Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
| | - Wentao Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
7
|
Chen Z, Liu X, Jiang Z, Wu H, Yang T, Peng L, Wu L, Luo Z, Zhang M, Su J, Tang Y, Li J, Xie Y, Shan H, Lin Q, Wang X, Chen X, Peng H, Zhao S, Chen Z. A piezoelectric-driven microneedle platform for skin disease therapy. Innovation (N Y) 2024; 5:100621. [PMID: 38680817 PMCID: PMC11053245 DOI: 10.1016/j.xinn.2024.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
With over a million cases detected each year, skin disease is a global public health problem that diminishes the quality of life due to its difficulty to eradicate, propensity for recurrence, and potential for post-treatment scarring. Photodynamic therapy (PDT) is a treatment with minimal invasiveness or scarring and few side effects, making it well tolerated by patients. However, this treatment requires further research and development to improve its effective clinical use. Here, a piezoelectric-driven microneedle (PDMN) platform that achieves high efficiency, safety, and non-invasiveness for enhanced PDT is proposed. This platform induces deep tissue cavitation, increasing the level of protoporphyrin IX and significantly enhancing drug penetration. A clinical trial involving 25 patients with skin disease was conducted to investigate the timeliness and efficacy of PDMN-assisted PDT (PDMN-PDT). Our findings suggested that PDMN-PDT boosted treatment effectiveness and reduced the required incubation time and drug concentration by 25% and 50%, respectively, without any anesthesia compared to traditional PDT. These findings suggest that PDMN-PDT is a safe and minimally invasive approach for skin disease treatment, which may improve the therapeutic efficacy of topical medications and enable translation for future clinical applications.
Collapse
Affiliation(s)
- Ziyan Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xin Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Dermatology, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710000, China
| | - Zixi Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huayi Wu
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Tao Yang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Lanyuan Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lisha Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhongling Luo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jinmao Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yang Xie
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Han Shan
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Qibo Lin
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hanmin Peng
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zeyu Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- Furong Laboratory (Precision Medicine), Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
8
|
Shan H, Sun Q, Xie Y, Liu X, Chen X, Zhao S, Chen Z. Dialysis-functionalized microfluidic platform for in situ formation of purified liposomes. Colloids Surf B Biointerfaces 2024; 236:113829. [PMID: 38430829 DOI: 10.1016/j.colsurfb.2024.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Continuous-flow microfluidic devices have been extensively used for producing liposomes due to their high controllability and efficient synthesis processes. However, traditional methods for liposome purification, such as dialysis, gel chromatography, and ultrafiltration, are incompatible with microfluidic devices, which would dramatically restrict the efficiency of liposome synthesis. In this study, we developed a dialysis-functionalized microfluidic platform (DFMP) for in situ formation of purified drug-loaded liposomes. The device was successfully fabricated by using a high-resolution projection micro stereolithography (PμSL) 3D printer. The integrated DFMP consists of a microfluidic mixing unit, a microfluidic dialysis unit, and a dialysis membrane, enabling the liposome preparation and purification in one device. The purified ICG-loaded liposomes prepared by DFMP had a smaller size (264.01±5.34 nm to 173.93±10.71 nm) and a higher encapsulation efficiency (EE) (43.53±0.07% to 46.07±0.67%). In vivo photoacoustic (PA) imaging experiment demonstrated that ICG-loaded liposomes purified with microfluidic dialysis exhibited a stronger penetration and accumulation (2-3 folds) in tumor sites. This work provides a new strategy for one-step production of purified drug-loaded liposomes.
Collapse
Affiliation(s)
- Han Shan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Qi Sun
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yang Xie
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiangdong Liu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China.
| | - Zeyu Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
9
|
Gao X, Cao K, Yang J, Liu L, Gao L. Recent advances in nanotechnology for programmed death ligand 1-targeted cancer theranostics. J Mater Chem B 2024; 12:3191-3208. [PMID: 38497358 DOI: 10.1039/d3tb02787b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) checkpoint inhibitor-based immunotherapy has provided a unique and potent weapon against cancer in clinical practice. The likelihood of achieving beneficial effects from PD-L1/PD-1 immune checkpoint blockade (ICB) therapy is clinically assessed by detecting PD-L1 expression through invasive tissue biopsies. However, PD-L1 expression is susceptible to tumor heterogeneity and dynamic response to ICB therapy. Moreover, currently, anti-PD-L1 immunotherapy still faces challenges of the low targeting efficiency of antibody drugs and the risk of immune-associated adverse events. To overcome these issues, advanced nanotechnology has been developed for the purpose of quantitative, non-invasive, and dynamic analyses of PD-L1, and to enhance the efficiency of ICB therapy. In this review, we first introduce the nanoprobe-assisted in vitro/in vivo modalities for the selective and sensitive analysis of PD-L1 during the diagnostic and therapeutic process. On the other hand, the feasibility of fabricating diverse functional nanocarriers as smart delivery systems for precisely targeted delivery of PD-L1 immune checkpoint inhibitors and combined therapies is highlighted. Finally, the current challenges are discussed and future perspectives for PD-L1-targeted cancer theranostics in preclinical research and clinical settings are proposed.
Collapse
Affiliation(s)
- Xinxin Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Kai Cao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Jingru Yang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Linhong Liu
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
10
|
Hajimolaali M, Dorkoosh FA, Antimisiaris SG. Review of recent preclinical and clinical research on ligand-targeted liposomes as delivery systems in triple negative breast cancer therapy. J Liposome Res 2024:1-26. [PMID: 38520185 DOI: 10.1080/08982104.2024.2325963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Triple-negative breast Cancer (TNBC) is one of the deadliest types, making up about 20% of all breast cancers. Chemotherapy is the traditional manner of progressed TNBC treatment; however, it has a short-term result with a high reversibility pace. The lack of targeted treatment limited and person-dependent treatment options for those suffering from TNBC cautions to be the worst type of cancer among breast cancer patients. Consequently, appropriate treatment for this disease is considered a major clinical challenge. Therefore, various treatment methods have been developed to treat TNBC, among which chemotherapy is the most common and well-known approach recently studied. Although effective methods are chemotherapies, they are often accompanied by critical limitations, especially the lack of specific functionality. These methods lead to systematic toxicity and, ultimately, the expansion of multidrug-resistant (MDR) cancer cells. Therefore, finding novel and efficient techniques to enhance the targeting of TNBC treatment is an essential requirement. Liposomes have demonstrated that they are an effective method for drug delivery; however, among a large number of liposome-based drug delivery systems annually developed, a small number have just received authorization for clinical application. The new approaches to using liposomes target their structure with various ligands to increase therapeutic efficiency and diminish undesired side effects on various body tissues. The current study describes the most recent strategies and research associated with functionalizing the liposomes' structure with different ligands as targeted drug carriers in treating TNBCs in preclinical and clinical stages.
Collapse
Affiliation(s)
- Mohammad Hajimolaali
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Sophia G Antimisiaris
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
- Institute of Chemical Engineering, Foundation for Research and Technology Hellas, FORTH/ICEHT, Patras, Greece
| |
Collapse
|
11
|
Joseph N, Mirzamani M, Abudiyah T, Al-Antaki AHM, Jellicoe M, Harvey DP, Crawley E, Chuah C, Whitten AE, Gilbert EP, Qian S, He L, Michael MZ, Kumari H, Raston CL. Vortex fluidic regulated phospholipid equilibria involving liposomes down to sub-micelle size assemblies. NANOSCALE ADVANCES 2024; 6:1202-1212. [PMID: 38356632 PMCID: PMC10863723 DOI: 10.1039/d3na01080e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Conventional channel-based microfluidic platforms have gained prominence in controlling the bottom-up formation of phospholipid based nanostructures including liposomes. However, there are challenges in the production of liposomes from rapidly scalable processes. These have been overcome using a vortex fluidic device (VFD), which is a thin film microfluidic platform rather than channel-based, affording ∼110 nm diameter liposomes. The high yielding and high throughput continuous flow process has a 45° tilted rapidly rotating glass tube with an inner hydrophobic surface. Processing is also possible in the confined mode of operation which is effective for labelling pre-VFD-prepared liposomes with fluorophore tags for subsequent mechanistic studies on the fate of liposomes under shear stress in the VFD. In situ small-angle neutron scattering (SANS) established the co-existence of liposomes ∼110 nm with small rafts, micelles, distorted micelles, or sub-micelle size assemblies of phospholipid, for increasing rotation speeds. The equilibria between these smaller entities and ∼110 nm liposomes for a specific rotational speed of the tube is consistent with the spatial arrangement and dimensionality of topological fluid flow regimes in the VFD. The prevalence for the formation of ∼110 nm diameter liposomes establishes that this is typically the most stable structure from the bottom-up self-assembly of the phospholipid and is in accord with dimensions of exosomes.
Collapse
Affiliation(s)
- Nikita Joseph
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Marzieh Mirzamani
- James L. Winkle College of Pharmacy, University of Cincinnati Cincinnati OH 45267-0004 USA
| | - Tarfah Abudiyah
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Ahmed Hussein Mohammed Al-Antaki
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
- Department of Chemistry, Faculty of Science, University of Kufa Najaf 54001 Iraq
| | - Matt Jellicoe
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - David P Harvey
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Emily Crawley
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Clarence Chuah
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Andrew E Whitten
- Australian Nuclear Science and Technology Organisation (ANSTO) Lucas Heights NSW 2234 Australia
| | - Elliot Paul Gilbert
- Australian Nuclear Science and Technology Organisation (ANSTO) Lucas Heights NSW 2234 Australia
| | - Shuo Qian
- The Second Target Station Project of SNS, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer (FCIC), Flinders Medical Centre (FMC) Bedford Park SA 5042 Australia
| | - Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati Cincinnati OH 45267-0004 USA
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| |
Collapse
|
12
|
Wu C, Sun Q, Liu X, Sun X, Chen Z, Shan H. Indocyanine Green-Loaded Liposomes-Assisted Photoacoustic Computed Tomography for Evaluating In Vivo Tumor Penetration of Liposomal Nanocarriers. MICROMACHINES 2023; 15:90. [PMID: 38258209 PMCID: PMC10820658 DOI: 10.3390/mi15010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
Liposomes possess the potential to enhance drug solubility, prolong the duration of circulation, and augment drug accumulation at the tumor site through passive and active targeting strategies. However, there is a lack of studies examining the in vivo tumor penetration capabilities of liposomes of varying sizes, which hampers the development of drug delivery systems utilizing liposomal nanocarriers. Here, we present an indocyanine green (ICG)-loaded liposomes-assisted photoacoustic computed tomography (PACT) for directly evaluating the tumor penetration ability of liposomal nanocarriers in vivo. Through the utilization of microfluidic mixing combined with extrusion techniques, we successfully prepare liposomes encapsulating ICG in both large (192.6 ± 8.0 nm) and small (61.9 ± 0.6 nm) sizes. Subsequently, we designed a dual-wavelength PACT system to directly monitor the in vivo tumor penetration of large- and small-size ICG-encapsulated liposomes. In vivo PACT experiments indicate that ICG-loaded liposomes of smaller size exhibit enhanced penetration capability within tumor tissues. Our work presents a valuable approach to directly assess the penetration ability of liposomal nanocarriers in vivo, thereby facilitating the advancement of drug delivery systems with enhanced tumor penetration and therapeutic efficacy.
Collapse
Affiliation(s)
- Chenjun Wu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
- Changjun Riverside Middle School, Changsha 410023, China
| | - Qi Sun
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiangdong Liu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xin Sun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Zeyu Chen
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Han Shan
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|