1
|
Li X, Li H, Wang Z, Wang X, Zhang J, Bin F, Chen W, Li H, Huo D, Xiao D. Fish Fin-Derived Non-Invasive Flexible Bioinspired Contact Lens for Continuous Ophthalmic Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412630. [PMID: 39686625 PMCID: PMC11809385 DOI: 10.1002/advs.202412630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Efficient drug delivery is crucial for glaucoma patients. Flexible biomedical devices that enable sustained ocular drug delivery and can regulate the drug release rate according to physiological conditions are highly desirable for glaucoma treatments, addressing both low drug bioavailability and poor patient compliance from manual drug administration, and improving treatment outcomes. Inspired by the structure and reciprocating motion of fish dorsal fins, a drug-eluting contact lens based on deformable microstructures for non-invasive ocular surface drug delivery is developed. Liquid drugs are stored within the interstices of the deformable microstructural units, allowing for continuous drug release through diffusion upon contact with the ocular surface. Finite element analysis is utilized to study the intraocular drug transport dynamics of glaucoma and optimize the overall layout of the device. Microstructural units undergo deformation under loading, altering the interstitial spaces and modulating the drug release rate. This device can adaptively adjust its drug release rate based on changes in intraocular pressure (IOP) and can be proactively regulated in response to cyclic eye loads, accommodating elevated IOP caused by varying body postures and activities. As a flexible, non-invasive, highly dynamic, and adaptive drug delivery platform, it holds significant potential for future biomedical applications.
Collapse
Affiliation(s)
- Xu Li
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Hui Li
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Zihao Wang
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Xianda Wang
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Jinlong Zhang
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Fengjiao Bin
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Wei Chen
- Beijing University of TechnologyBeijing100124China
| | - Hongyang Li
- Beijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | | | - Dengbao Xiao
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
2
|
Fisher D, Collins MJ, Vincent SJ. Contact lens fenestrations and channels in relation to tear exchange and corneal oedema. Clin Exp Optom 2024:1-14. [PMID: 39567241 DOI: 10.1080/08164622.2024.2426823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/22/2024] Open
Abstract
Oxygen delivery and tear exchange are considered essential to maintain corneal homoeostasis during contact lens wear. Since the 1940s, fenestrations and back surface channels have been utilised in scleral, corneal rigid, and soft contact lenses in an attempt to enhance corneal oxygen transmission, facilitate the removal of carbon dioxide from the post-lens tear layer, minimise corneal oedema and prevent post-lens tear stagnation. This review examines the use of contact lens fenestrations and channels in both clinical and laboratory settings, and the effect of these modifications upon tear exchange and corneal oedema. Despite almost a century of modifying contact lenses to alter tear dynamics and promote corneal health, the evidence regarding the efficacy of fenestrations and channels is mixed.
Collapse
Affiliation(s)
- Damien Fisher
- Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Michael J Collins
- Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Stephen J Vincent
- Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
3
|
Li P, Wang Y, Qiu M, Wang Y, Lu Z, Yu J, Xia F, Feng Y, Tian Y. Rapid spread, slow evaporation: a long-lasting water film on hydrogel nanowire arrays for continuous wearables. MATERIALS HORIZONS 2024; 11:5768-5776. [PMID: 39279680 DOI: 10.1039/d4mh00755g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
A successful flexible wearable not only has to fulfill its function, but also has to ensure long-term wettability and comfort during wearing. In biological systems, tears spread rapidly across the cornea to ensure clear imaging while slowly evaporating to maintain moisture in the eyes. This dynamic behavior of 'rapid spread, slow evaporation' ensures durative humidity and comfort, which can provide design guidelines for continuous wearable devices. However, realizing this dynamic process in vitro remains a challenge. Herein, inspired by a healthy ocular surface, we biomimetically construct a hybrid surface featuring mucin-like hydrophilic layer@hydrogel nanowire arrays (HL@HNWs). A droplet (2 μL) rapidly spreads into a thin film, stabilizing for ∼10 minutes, whereas the contrast sample rapidly ruptures and dewets within 1 minute. We demonstrate that enhancing the proportion of hydrated water (HW), which includes intermediate water (IW) and bound water (BW), and introducing the capillary resistance of the nanowire arrays could synergistically stabilize the water film and improve the wettability. Hydrogel-based nanowire array contact lenses can ensure wettability during continuous wear, and a stable water film can substantially improve comfort and provide superior visual quality.
Collapse
Affiliation(s)
- Peijia Li
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Wang
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Qiu
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yixiao Wang
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhaoxiang Lu
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China.
| | - Jianning Yu
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China.
| | - Ye Tian
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| |
Collapse
|
4
|
Rapti C, Luciano FC, Anaya BJ, Ramirez BI, Ongoren B, Dea-Ayuela MA, Lalatsa A, Serrano DR. Amphotericin B Ocular Films for Fungal Keratitis and a Novel 3D-Printed Microfluidic Ocular Lens Infection Model. J Fungi (Basel) 2024; 10:762. [PMID: 39590681 PMCID: PMC11595471 DOI: 10.3390/jof10110762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Fungal keratitis (FK), a severe eye infection that leads to vision impairment and blindness, poses a high risk to contact lens users, and Candida albicans remains the most common underpinning fungal pathogen in temperate climates. Patients are initially treated empirically (econazole 1% drops hourly for 24-48 h), and if there is no response, amphotericin B (AmB) 0.15% eye drops (extemporaneously manufactured to be stable for a week) are the gold-standard treatment. Here, we aim to develop a sustained-release AmB ocular film to treat FK with an enhanced corneal retention time. As there is a paucity of reliable in vitro models to evaluate ocular drug release and antifungal efficacy under flow, we developed a 3D-printed microfluidic device based on four chambers stacked in parallel, in which lenses previously inoculated with a C. albicans suspension were placed. Under the flow of a physiological fluid over 24 h, the release from the AmB-loaded film that was placed dry onto the surface of the wetted contact lenses was quantified, and their antifungal activity was assessed. AmB sodium deoxycholate micelle (dimeric form) was mixed with sodium alginate and hyaluronic acid (3:1 w/w) and cast into films (0.48 or 2.4%), which showed sustained release over 24 h and resulted in a 1.23-fold reduction and a 5.7-fold reduction in CFU/mL of C. albicans, respectively. This study demonstrates that the sustained delivery of dimeric AmB can be used for the treatment of FK and provides a facile in vitro microfluidic model for the development and testing of ophthalmic antimicrobial therapies.
Collapse
Affiliation(s)
- Chrysi Rapti
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.R.); (F.C.L.); (B.J.A.); (B.I.R.); (B.O.)
| | - Francis C. Luciano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.R.); (F.C.L.); (B.J.A.); (B.I.R.); (B.O.)
| | - Brayan J. Anaya
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.R.); (F.C.L.); (B.J.A.); (B.I.R.); (B.O.)
| | - Bianca I. Ramirez
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.R.); (F.C.L.); (B.J.A.); (B.I.R.); (B.O.)
| | - Baris Ongoren
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.R.); (F.C.L.); (B.J.A.); (B.I.R.); (B.O.)
| | | | - Aikaterini Lalatsa
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, John Arbuthnot Building, Robertson Wing, 161 Cathedral St, Glasgow G4 0RE, UK
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.R.); (F.C.L.); (B.J.A.); (B.I.R.); (B.O.)
- Instituto Universitario de Farmacia Industrial, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Gao B, Jiang J, Zhou S, Li J, Zhou Q, Li X. Toward the Next Generation Human-Machine Interaction: Headworn Wearable Devices. Anal Chem 2024; 96:10477-10487. [PMID: 38888091 DOI: 10.1021/acs.analchem.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Wearable devices are lightweight and portable devices worn directly on the body or integrated into the user's clothing or accessories. They are usually connected to the Internet and combined with various software applications to monitor the user's physical conditions. The latest research shows that wearable head devices, particularly those incorporating microfluidic technology, enable the monitoring of bodily fluids and physiological states. Here, we summarize the main forms, functions, and applications of head wearable devices through innovative researches in recent years. The main functions of wearable head devices are sensor monitoring, diagnosis, and even therapeutic interventions. Through this application, real-time monitoring of human physiological conditions and noninvasive treatment can be realized. Furthermore, microfluidics can realize real-time monitoring of body fluids and skin interstitial fluid, which is highly significant in medical diagnosis and has broad medical application prospects. However, despite the progress made, significant challenges persist in the integration of microfluidics into wearable devices at the current technological level. Herein, we focus on summarizing the cutting-edge applications of microfluidic contact lenses and offer insights into the burgeoning intersection between microfluidics and head-worn wearables, providing a glimpse into their future prospects.
Collapse
Affiliation(s)
- Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jingwen Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Shu Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jun Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
6
|
Puertas-Bartolomé M, Gutiérrez-Urrutia I, Teruel-Enrico LL, Duong CN, Desai K, Trujillo S, Wittmann C, Del Campo A. Self-Lubricating, Living Contact Lenses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313848. [PMID: 38583064 DOI: 10.1002/adma.202313848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Indexed: 04/08/2024]
Abstract
The increasing prevalence of dry eye syndrome in aging and digital societies compromises long-term contact lens (CL) wear and forces users to regular eye drop instillation to alleviate discomfort. Here a novel approach with the potential to improve and extend the lubrication properties of CLs is presented. This is achieved by embedding lubricant-secreting biofactories within the CL material. The self-replenishable reservoirs autonomously produce and release hyaluronic acid (HA), a natural lubrication and wetting agent, long term. The hydrogel matrix regulates the growth of the biofactories and the HA production, and allows the diffusion of nutrients and HA for at least 3 weeks. The continuous release of HA sustainably reduces the friction coefficient of the CL surface. A self-lubricating CL prototype is presented, where the functional biofactories are contained in a functional ring at the lens periphery, outside of the vision area. The device is cytocompatible and fulfils physicochemical requirements of commercial CLs. The fabrication process is compatible with current manufacturing processes of CLs for vision correction. It is envisioned that the durable-by-design approach in living CL could enable long-term wear comfort for CL users and minimize the need for lubricating eye drops.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| | | | | | - Cao Nguyen Duong
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Krupansh Desai
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Sara Trujillo
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany
| | - Aránzazu Del Campo
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
7
|
Wu KY, Dave A, Carbonneau M, Tran SD. Smart Contact Lenses in Ophthalmology: Innovations, Applications, and Future Prospects. MICROMACHINES 2024; 15:856. [PMID: 39064367 PMCID: PMC11279085 DOI: 10.3390/mi15070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Smart contact lenses represent a breakthrough in the intersection of medical science and innovative technology, offering transformative potential in ophthalmology. This review article delves into the technological underpinnings of smart contact lenses, emphasizing the current landscape and advancements in biosensors, power supply, biomaterials, and the transmission of ocular information. This review further applies new innovations to their emerging role in the diagnosis, monitoring, and management of various ocular conditions. Moreover, we explore the impact of technical innovations on the application of smart contact lenses in monitoring glaucoma, managing postoperative care, and dry eye syndrome, further elucidating the non-invasive nature of these devices in continuous ocular health monitoring. The therapeutic potential of smart contact lenses such as treatment through targeted drug delivery and the monitoring of inflammatory biomarkers is also highlighted. Despite promising advancements, the implementation of smart contact lenses faces technical, regulatory, and patient compliance challenges. This review synthesizes the recent advances to provide an outlook on the state of smart contact lens technology. Furthermore, we discuss future directions, focusing on potential technological enhancements and new applications within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Archan Dave
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Marjorie Carbonneau
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
8
|
M A, George SD. A surface-engineered contact lens for tear fluid biomolecule sensing. LAB ON A CHIP 2024; 24:2327-2334. [PMID: 38563256 DOI: 10.1039/d4lc00176a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The eyes provide rich physiological information and offer diagnostic potential as a sensing site, and probing tear constituents via the wearable contact lens could be explored for healthcare monitoring. Herein, we propose a novel adhesive contrast contact lens platform that can split tear film by natural means of tear secretion and blinking. The adhesive contrast is realized by selective grafting of a lubricant onto a polydimethylsiloxane (PDMS)-based contact lens, leading to high pinning zones on a non-adhesive background. The difference in contact angle hysteresis facilitates the liquid splitting. Further, the method offers control over the droplet volume by controlling the zone dimension. The adhesive contrast contact lens is coupled with fluorescent spectroscopic as well as colorimetric techniques to realize its potential as a diagnostic platform. The adhesive contrast contact lens is exploited to detect the level of lactoferrin in tear by sensitizing split droplets with Tb3+ ions. The adhesive contrast contact lens integrated with a fluorescence spectrometer was able to detect the lactoferrin level up to a concentration of 0.25 mg mL-1. Additionally, a colorimetric detection based on the fluorescence of the lactoferrin-terbium complex is demonstrated for the measurement of lactoferrin, with a limit of detection in the physiological range up to 0.5 mg mL-1.
Collapse
Affiliation(s)
- Aravind M
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India - 576104.
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India - 576104.
- Centre for Applied Nanosciences (CAN), Manipal Academy of Higher Education, Manipal, India - 576104
| |
Collapse
|
9
|
Apoorva S, Nguyen NT, Sreejith KR. Recent developments and future perspectives of microfluidics and smart technologies in wearable devices. LAB ON A CHIP 2024; 24:1833-1866. [PMID: 38476112 DOI: 10.1039/d4lc00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Wearable devices are gaining popularity in the fields of health monitoring, diagnosis, and drug delivery. Recent advances in wearable technology have enabled real-time analysis of biofluids such as sweat, interstitial fluid, tears, saliva, wound fluid, and urine. The integration of microfluidics and emerging smart technologies, such as artificial intelligence (AI), machine learning (ML), and Internet of Things (IoT), into wearable devices offers great potential for accurate and non-invasive monitoring and diagnosis. This paper provides an overview of current trends and developments in microfluidics and smart technologies in wearable devices for analyzing body fluids. The paper discusses common microfluidic technologies in wearable devices and the challenges associated with analyzing each type of biofluid. The paper emphasizes the importance of combining smart technologies with microfluidics in wearable devices, and how they can aid diagnosis and therapy. Finally, the paper covers recent applications, trends, and future developments in the context of intelligent microfluidic wearable devices.
Collapse
Affiliation(s)
- Sasikala Apoorva
- UKF Centre for Advanced Research and Skill Development(UCARS), UKF College of Engineering and Technology, Kollam, Kerala, India, 691 302
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| | - Kamalalayam Rajan Sreejith
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| |
Collapse
|
10
|
Khosravi S, Soltanian S, Servati A, Khademhosseini A, Zhu Y, Servati P. Screen-Printed Textile-Based Electrochemical Biosensor for Noninvasive Monitoring of Glucose in Sweat. BIOSENSORS 2023; 13:684. [PMID: 37504083 PMCID: PMC10377550 DOI: 10.3390/bios13070684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Wearable sweat biosensors for noninvasive monitoring of health parameters have attracted significant attention. Having these biosensors embedded in textile substrates can provide a convenient experience due to their soft and flexible nature that conforms to the skin, creating good contact for long-term use. These biosensors can be easily integrated with everyday clothing by using textile fabrication processes to enhance affordable and scalable manufacturing. Herein, a flexible electrochemical glucose sensor that can be screen-printed onto a textile substrate has been demonstrated. The screen-printed textile-based glucose biosensor achieved a linear response in the range of 20-1000 µM of glucose concentration and high sensitivity (18.41 µA mM-1 cm-2, R2 = 0.996). In addition, the biosensors show high selectivity toward glucose among other interfering analytes and excellent stability over 30 days of storage. The developed textile-based biosensor can serve as a platform for monitoring bio analytes in sweat, and it is expected to impact the next generation of wearable devices.
Collapse
Affiliation(s)
- Safoora Khosravi
- Flexible Electronics and Energy Lab (FEEL), Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Saeid Soltanian
- Flexible Electronics and Energy Lab (FEEL), Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amir Servati
- Materials Engineering Department, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Peyman Servati
- Flexible Electronics and Energy Lab (FEEL), Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
11
|
Zhu Y, Li J, Kim J, Li S, Zhao Y, Bahari J, Eliahoo P, Li G, Kawakita S, Haghniaz R, Gao X, Falcone N, Ermis M, Kang H, Liu H, Kim H, Tabish T, Yu H, Li B, Akbari M, Emaminejad S, Khademhosseini A. Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare. Biomaterials 2023; 296:122075. [PMID: 36931103 PMCID: PMC10085866 DOI: 10.1016/j.biomaterials.2023.122075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Skin-interfaced electronics (skintronics) have received considerable attention due to their thinness, skin-like mechanical softness, excellent conformability, and multifunctional integration. Current advancements in skintronics have enabled health monitoring and digital medicine. Particularly, skintronics offer a personalized platform for early-stage disease diagnosis and treatment. In this comprehensive review, we discuss (1) the state-of-the-art skintronic devices, (2) material selections and platform considerations of future skintronics toward intelligent healthcare, (3) device fabrication and system integrations of skintronics, (4) an overview of the skintronic platform for personalized healthcare applications, including biosensing as well as wound healing, sleep monitoring, the assessment of SARS-CoV-2, and the augmented reality-/virtual reality-enhanced human-machine interfaces, and (5) current challenges and future opportunities of skintronics and their potentials in clinical translation and commercialization. The field of skintronics will not only minimize physical and physiological mismatches with the skin but also shift the paradigm in intelligent and personalized healthcare and offer unprecedented promise to revolutionize conventional medical practices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Yichao Zhao
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Payam Eliahoo
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, 90007, United States
| | - Guanghui Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China; Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hao Liu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - HanJun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Tanveer Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Department of Manufacturing Systems Engineering and Management, California State University, Northridge, CA, 91330, United States
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada
| | - Sam Emaminejad
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| |
Collapse
|