1
|
Wu M, Holgado L, Harrower RM, Brown AC. Evaluation of the efficiency of various methods to load fluoroquinolones into Escherichia coli outer membrane vesicles as a novel antibiotic delivery platform. Biochem Eng J 2024; 210:109418. [PMID: 39092080 PMCID: PMC11290469 DOI: 10.1016/j.bej.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The development of novel antibacterial agents that are effective against Gram-negative bacteria is limited primarily by transport issues. This class of bacteria maintains a complex cell envelope consisting of two membrane bilayers, preventing the passage of most antibiotics. These drugs must therefore pass through protein channels called porins; however, many antibiotics are too large to pass through porins, and a common mechanism of acquired resistance is down-regulation of porins. To overcome this transport limitation, we have proposed the use of outer membrane vesicles (OMVs), released by Gram-negative bacteria, which deliver cargo to other bacterial cells in a porin-independent manner. In this work, we systematically studied the ability to load fluoroquinolones into purified Escherichia coli OMVs using in vivo and in vitro passive loading methods, and active loading methods such as electroporation and sonication. We observed limited loading of all of the antibiotics using passive loading techniques; sonication and electroporation significantly increased the loading, with electroporation at low voltages (200 and 400V) resulting in the greatest encapsulation efficiencies. We also demonstrated that imipenem, a carbapenem antibiotic, can be readily loaded into OMVs, and its administration via OMVs increases the effectiveness of the drug against E. coli. Our results demonstrate that small molecule antibiotics can be readily incorporated into OMVs to create novel delivery vehicles to improve antibiotic activity.
Collapse
Affiliation(s)
- Meishan Wu
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton St., Bethlehem, PA, 18015, USA
| | - Lauryn Holgado
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton St., Bethlehem, PA, 18015, USA
| | - Rachael M. Harrower
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Bethlehem, PA, 18015, USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton St., Bethlehem, PA, 18015, USA
| |
Collapse
|
2
|
Bettin I, Brattini M, Kachoie EA, Capaldi S, Thalappil MA, Bernardi P, Ferrarini I, Fuhrmann G, Mariotto S, Butturini E. Extracellular Vesicles based STAT3 delivery as innovative therapeutic approach to restore STAT3 signaling deficiency. N Biotechnol 2024; 82:43-53. [PMID: 38734368 DOI: 10.1016/j.nbt.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Extracellular Vesicles (EVs) have been proposed as a promising tool for drug delivery because of their natural ability to cross biological barriers, protect their cargo, and target specific cells. Moreover, EVs are not recognized by the immune system as foreign, reducing the risk of an immune response and enhancing biocompatibility. Herein, we proposed an alternative therapeutic strategy to restore STAT3 signaling exploiting STAT3 loaded EVs. This approach could be useful in the treatment of Autosomal Dominant Hyper-IgE Syndrome (AD-HIES), a rare primary immunodeficiency and multisystem disorder due to the presence of mutations in STAT3 gene. These mutations alter the signal transduction of STAT3, thereby impeding Th17 CD4+ cell differentiation that leads to the failure of immune response. We set up a simple and versatile method in which EVs were loaded with fully functional STAT3 protein. Moreover, our method allows to follow the uptake of STAT3 loaded vesicles inside cells due to the presence of EGFP in the EGFP-STAT3 fusion protein construct. Taken together, the data presented in this study could provide the scientific background for the development of new therapeutic strategy aimed to restore STAT3 signaling in STAT3 misfunction associated diseases like AD-HIES. In the future, the administration of fully functional wild type STAT3 to CD4+ T cells of AD-HIES patients might compensate its loss of function and would be beneficial for these patients, lowering the risk of infections, the use of medications, and hospitalizations.
Collapse
Affiliation(s)
- Ilaria Bettin
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Martina Brattini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Elham Ataie Kachoie
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134 Verona, Italy.
| | - Stefano Capaldi
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134 Verona, Italy.
| | - Muhammed Ashiq Thalappil
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Paolo Bernardi
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Human Anatomy, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Isacco Ferrarini
- Department of Engineering for Innovation Medicine, Section of Hematology, University of Verona, Verona, Italy.
| | - Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| |
Collapse
|
3
|
Radford EJ, Whitworth DE. The genetic basis of predation by myxobacteria. Adv Microb Physiol 2024; 85:1-55. [PMID: 39059819 DOI: 10.1016/bs.ampbs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myxobacteria (phylum Myxococcota) are abundant and virtually ubiquitous microbial predators. Facultatively multicellular organisms, they are able to form multicellular fruiting bodies and swarm across surfaces, cooperatively hunting for prey. Myxobacterial communities are able to kill a wide range of prey microbes, assimilating their biomass to fuel population growth. Their mechanism of predation is exobiotic - hydrolytic enzymes and toxic metabolites are secreted into the extracellular environment, killing and digesting prey cells from without. However, recent observations of single-cell predation and contact-dependent prey killing challenge the dogma of myxobacterial predation being obligately cooperative. Regardless of their predatory mechanisms, myxobacteria have a broad prey range, which includes Gram-negative bacteria, Gram-positive bacteria and fungi. Pangenome analyses have shown that their extremely large genomes are mainly composed of accessory genes, which are not shared by all members of their species. It seems that the diversity of accessory genes in different strains provides the breadth of activity required to prey upon such a smorgasbord of microbes, and also explains the considerable strain-to-strain variation in predatory efficiency against specific prey. After providing a short introduction to general features of myxobacterial biology which are relevant to predation, this review brings together a rapidly growing body of work into the molecular mechanisms and genetic basis of predation, presenting a summary of current knowledge, highlighting trends in research and suggesting strategies by which we can potentially exploit myxobacterial predation in the future.
Collapse
Affiliation(s)
- Emily J Radford
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - David E Whitworth
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom.
| |
Collapse
|
4
|
Jayathilaka EHTT, Dias MKHM, Nikapitiya C, De Zoysa M. Immunomodulatory responses of extracellular vesicles released by gram-positive fish pathogen Streptococcus parauberis. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109508. [PMID: 38519003 DOI: 10.1016/j.fsi.2024.109508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are nanosized structures that play a role in intercellular communication and transport of bioactive molecules. Streptococcus parauberis is a Gram-positive pathogenic bacterium that causes "Streptococcosis" in fish. In this study, we isolated S. parauberis-derived extracellular vesicles (SpEVs), and then physicochemical and immunomodulatory properties were determined to elucidate their biological functions. Initially, the biogenesis of SpEVs was detected using field emission scanning electron microscopy, which revealed that secretory phase SpEVs attached to the outer surface of S. parauberis. SpEVs had an average particle diameter and zeta potential of 168.3 ± 6.5 nm and -17.96 ± 2.11 mV, respectively. Field emission transmission electron microscopy analysis confirmed the presence of round or oval-shaped SpEVs with clear membrane margins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis results showed three sharp protein bands when SpEVs were stained with Coomassie blue. In vitro toxicity of SpEVs was assayed using the murine macrophage RAW 264.7 cells and we observed no significant (p < 0.05) viability reduction up to 50 μg/mL qRT-PCR results revealed that SpEVs-treated (5 and 10 μg/mL) RAW 264.7 cells significantly (p < 0.05) induced the mRNA of proinflammatory (Il1β, Il6, and Tnfα) and anti-inflammatory (Il10) cytokines in a concentration-dependent manner. In vivo immunomodulatory effects of SpEVs were investigated by injecting SpEVs (5 and 10 μg/fish) into adult zebrafish. Transcriptional analysis based on qRT-PCR indicates significant (p < 0.05) upregulation of proinflammatory (il1β, il6, and tnfα) and anti-inflammatory (il10) genes in a concentration-dependent manner in zebrafish kidney. Further, protein expression results in zebrafish spleen tissue confirmed the immunomodulatory activity of SpEVs. In conclusion, SpEVs display the characteristics of BEVs and immunomodulatory activities, suggesting their potential application as vaccine candidate.
Collapse
Affiliation(s)
- E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | | | - Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
5
|
Marquez CA, Oh CI, Ahn G, Shin WR, Kim YH, Ahn JY. Synergistic vesicle-vector systems for targeted delivery. J Nanobiotechnology 2024; 22:6. [PMID: 38167116 PMCID: PMC10763086 DOI: 10.1186/s12951-023-02275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
With the immense progress in drug delivery systems (DDS) and the rise of nanotechnology, challenges such as target specificity remain. The vesicle-vector system (VVS) is a delivery system that uses lipid-based vesicles as vectors for a targeted drug delivery. When modified with target-probing materials, these vesicles become powerful vectors for drug delivery with high target specificity. In this review, we discuss three general types of VVS based on different modification strategies: (1) vesicle-probes; (2) vesicle-vesicles; and (3) genetically engineered vesicles. The synthesis of each VVS type and their corresponding properties that are advantageous for targeted drug delivery, are also highlighted. The applications, challenges, and limitations of VVS are briefly examined. Finally, we share a number of insights and perspectives regarding the future of VVS as a targeted drug delivery system at the nanoscale.
Collapse
Affiliation(s)
- Christine Ardelle Marquez
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Cho-Im Oh
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Gna Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Woo-Ri Shin
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St, Philadelphia, PA, 19104, USA
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
6
|
Fuhrmann G, Mehanny M. Spray Drying of Bacterial Membrane Vesicles for Vaccine Delivery. Methods Mol Biol 2024; 2843:163-175. [PMID: 39141300 DOI: 10.1007/978-1-0716-4055-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Extracellular vesicles are nanosized lipid-bilayered spheres secreted from every living cell and they serve physiological and pathophysiological functions. Bacterial membrane vesicles are shed from both Gram-negative and Gram-positive bacteria and harbor many virulence factors, nuclear material, polysaccharides, proteins, and antigenic determinants, which are essential for immune recognition and evasion. Hence, bacterial membrane vesicles are very promising vaccine candidates. Spray drying is a well-established pharmaceutical technique to produce inhalable dry powders with enhanced stability for formulations of vaccines. In this chapter, we illustrate general guidelines for spray drying of bacterial extracellular vesicles to improve their stability without compromising their immunogenic protective effect. We discuss some of the most important experiments to characterize the generated spray-dried bacterial membrane vesicle powder vaccine.
Collapse
Affiliation(s)
- Gregor Fuhrmann
- Department of Biology, Pharmaceutical Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- FAU NeW-Research Center New Bioactive Compounds, Erlangen, Germany.
| | - Mina Mehanny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|