1
|
Cao S, Sun T, Peng Y, Yu X, Li Q, Meng FL, Yang F, Wang H, Xie Y, Hou CC, Xu Q. Simultaneously Producing H 2 and H 2O 2 by Photocatalytic Water Splitting: Recent Progress and Future. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404285. [PMID: 39073246 DOI: 10.1002/smll.202404285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Indexed: 07/30/2024]
Abstract
The solar-driven overall water splitting (2H2O→2H2 + O2) is considered as one of the most promising strategies for reducing carbon emissions and meeting energy demands. However, due to the sluggish performance and high H2 cost, there is still a big gap for the current photocatalytic systems to meet the requirements for practical sustainable H2 production. Economic feasibility can be attained through simultaneously generating products of greater value than O2, such as hydrogen peroxide (H2O2, 2H2O→H2 + H2O2). Compared with overall water splitting, this approach is more kinetically feasible and generates more high-value products of H2 and H2O2. In several years, there has been an increasing surge in exploring the possibility and substantial progress has been achieved. In this review, a concise overview of the importance and underlying principles of PIWS is first provided. Next, the reported typical photocatalysts for PIWS are discussed, including commonly used semiconductors and cocatalysts, essential design features of these photocatalysts, and connections between their structures and activities, as well as the selected approaches for enhancing their stability. Then, the techniques used to quantify H2O2 and the operando characterization techniques that can be employed to gain a thorough understanding of the reaction mechanisms are summarized. Finally, the current existing challenges and the direction needing improvement are presented. This review aims to provide a thorough summary of the most recent research developments in PIWS and sets the stage for future advancements and discoveries in this emerging area.
Collapse
Affiliation(s)
- Shuang Cao
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yong Peng
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Xianghui Yu
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qinzhu Li
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Fan Lu Meng
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Fan Yang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Han Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Yunhui Xie
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Chun-Chao Hou
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
2
|
Ji J, Wang J, Jiang T, Chen Z, Wang Z, Feng Y. Engineering the Blackbody Absorption of the Au-Branch-on-Au-Plate Heterostructures. Inorg Chem 2024; 63:14256-14265. [PMID: 39012859 DOI: 10.1021/acs.inorgchem.4c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Utilizing the strong ligand control effects of l-cysteine (l-Cys), the growth of Au on Au triangular nanoplate (AuTN) seeds was continuously tuned from layer-by-layer (the Frank-van der Merwe) to layer-plus-island (the Stranski-Krastanov), and island (the Volmer-Weber) growth modes, leading to the formation of a series of Au-on-AuTN heterostructures. Within the window of VW growth mode (featured by the growth of Au spikes and branches on AuTNs), the effective localized surface plasmon resonance (LSPR) coupling led to the selective strengthening of the "valley" absorptions, leading to smooth and flat absorption curves. Interestingly, through engineering the number/density, size, and branching degree of the Au branches, except for the black color, full spectrum absorption within 400-1300 nm wavelength was achieved on Au-branch-on-AuTN structures. Mechanistic studies revealed that the blackbody absorption property of the Au-branch-on-AuTN originates from the well-balanced intraparticle LSPR couplings among the neighboring Au branches. The tunable blackness and the full spectrum absorption property made the Au-branch-on-AuTN heterostructure a suitable candidate for various plasmonic-related applications, such as a wide spectrum light absorber, photoacoustic imaging contrast agent, and photothermal therapy medium. In addition, our strong ligand control in Au-branch-on-AuTN heterostructures could be extended to other hybrid systems with diverse material combinations, so long as to find the proper strong ligand.
Collapse
Affiliation(s)
- Jin Ji
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junsheng Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tingting Jiang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zijie Chen
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhiwei Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuhua Feng
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Wang S, Cui Y, Dalani T, Sit KY, Zhuo X, Choi CK. Polydopamine-based plasmonic nanocomposites: rational designs and applications. Chem Commun (Camb) 2024; 60:2982-2993. [PMID: 38384206 DOI: 10.1039/d3cc05883b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Taking advantage of its adhesive nature and chemical reactivity, polydopamine (PDA) has recently been integrated with plasmonic nanoparticles to yield unprecedented hybrid nanostructures. With advanced architectures and optical properties, PDA-based plasmonic nanocomposites have showcased their potential in a wide spectrum of plasmon-driven applications, ranging from catalysis and chemical sensing, to drug delivery and photothermal therapy. The rational design of PDA-based plasmonic nanocomposites entails different material features of PDA and necessitates a thorough understanding of the sophisticated PDA chemistry; yet, there is still a lack of a systematic review on their fabrication strategies, plasmonic properties, and applications. In this Highlight review, five representative types of PDA-based plasmonic nanocomposites will be featured. Specifically, their design principles, synthetic strategies, and optical behaviors will be elucidated with an emphasis on the irreplaceable roles of PDA in the synthetic mechanisms. Together, their essential functions in diverse applications will be outlined. Lastly, existing challenges and outlooks on the rational design and assembly of next-generation PDA-based plasmonic nanocomposites will be presented. This Highlight review aims to provide synthetic insights and hints to inspire and aid researchers to innovate PDA-based plasmonic nanocomposites.
Collapse
Affiliation(s)
- Shengyan Wang
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Yiou Cui
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Tarun Dalani
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - King Yin Sit
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Xiaolu Zhuo
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Chun Kit Choi
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
4
|
Hao HL, Zhu J, Weng GJ, Li JJ, Guo YB, Zhao JW. Exclusive Core-Janus Satellite Assembly Based on Au-Ag Janus Self-Aligned Distributions with Abundant Hotspots for Ultrasensitive Detection of CA19-9. ACS Sens 2024; 9:942-954. [PMID: 38295764 DOI: 10.1021/acssensors.3c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The development of surface-enhanced Raman scattering (SERS) probes with high sensitivity and stability is imminent to improve the accuracy of cancer diagnosis. Here, an exclusive core-Janus satellite (CJS) assembly was constructed by a hierarchical assembly strategy in which the Au-Ag Janus satellite is vertically self-aligned on the core surface. In the process, a silica shell template was ingeniously employed to asymmetrically mask the presatellites for the in situ formation of the Janus structure, and a series of Janus satellites with different morphologies were developed by regulating the encapsulated area of the presatellites. The ordered-oriented arrangement of Au-Ag Janus and unique heterojunction morphology permit CJS assemblies, featuring two types of plasmonic nanogaps, including intrananocrevices for individual Janus and internanogaps between neighboring Janus, thereby multiplying the "hotspots" compared to conventional core-monotonous satellites, which contributes to superior SERS activity. As anticipated, the enhancement factor of CJS assemblies was as high as 3.8 × 108. Moreover, it is intriguing that the directional distribution and head physically immobilized by Janus provided uniform and stable SERS signals. The SERS probe based on the CJS assembly for the detection of carbohydrate antigen 19-9 resulted in an ultrahigh sensitivity with a limit of detection of 3.7 × 10-5 IU·mL-1, which is nearly 10 times lower than other SERS probes, and a wide detection range of 3 × 10-5 to 1 × 104 IU·mL-1. The CJS assembly with excellent SERS performance is promising to advance further development of the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Hui-Li Hao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu-Bo Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
5
|
Abstract
ConspectusNanosynthesis is the art of creating nanostructures, with on-demand synthesis as the ultimate goal. Noble metal nanoparticles have wide applications, but the available synthetic methods are still limited, often giving nanospheres and symmetrical nanocrystals. The fundamental reason is that the conventional weak ligands are too labile to influence the materials deposition, so the equivalent facets always grow equivalently. Considering that the ligands are the main synthetic handles in colloidal synthesis, our group has been exploring strong ligands for new growth modes, giving a variety of sophisticated nanostructures. The model studies often involve metal deposition on seeds functionalized with a certain strong ligand, so that the uneven distribution of the surface ligands could guide the subsequent deposition.In this Account, we focus on the design principles underlying the new growth modes, summarizing our efforts in this area along with relevant literature works. The basics of ligand control are first revisited. Then, the four major growth modes are summarized as follows: (1) The curvature effects would divert the materials deposition away from the high-curvature tips when the ligands are insufficient. With ligands fully covering the seeds, the sparser ligand packing at the tips would then promote the initial nucleation thereon. (2) The strong ligands may get trapped under the incoming metal layer, thus modulating the interfacial energy of the core-shell interface. The evidence for embedded ligands is discussed, along with examples of Janus nanostructures arising from the synthetic control, including metal-metal, metal-semiconductor, and metal-C60 systems using a variety of ligands. (3) Active surface growth is an unusual mode with divergent growth rates, so that part of the emerging surface is inhibited, and the growth is focused onto a few active sites. With seeds attached to oxide substrates, the selective deposition at the metal-substrate interface produces ultrathin nanowires. The synthesis can be generally applied to grow Au, Ag, Pd, Pt, and hybrid nanowires, with straight, spiral, or helical structures, and even rapid alteration of segments via electrochemical methods. In contrast, active surface growth for colloidal nanoparticles has to be more carefully controlled. The rich growth phenomena are discussed, highlighting the role of strong ligands, the control of deposition rates, the chiral induction, and the evidence for the active sites. (4) An active site with sparse ligands could also be exploited in etching, where the freshly exposed surface would promote further etching. The result is an unusual sharpening etching mode, in contrast to the conventional rounding mode for minimized surface energy.Colloidal nanosynthesis holds great promise for scalable on-demand synthesis, providing the crucial nanomaterials for future explorations. The strong ligands have delivered powerful synthetic controls, which could be further enhanced with in-depth studies on growth mechanisms and synthetic strategies, as well as functions and properties.
Collapse
Affiliation(s)
- Ruixue Xiao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jia Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruoxu Wang
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310023, China
| | - Yuhua Feng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hongyu Chen
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310023, China
| |
Collapse
|