1
|
Li T, Chen XH, Fu HC, Zhang Q, Yang B, Luo HQ, Li NB. Synergistic effects of interface and phase engineering on telluride toward alkaline/neutral hydrogen evolution reaction in freshwater/seawater. J Colloid Interface Sci 2024; 676:896-905. [PMID: 39068834 DOI: 10.1016/j.jcis.2024.07.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
The development of efficient, stable, and versatile hydrogen evolution electrocatalysts is of great meaning, but still faces challenging. Interface engineering and phase engineering have been immensely applied in the field of hydrogen evolution reaction (HER) because of their unique physicochemical properties. However, they are typically used separately, which limits their effectiveness. Herein, we propose an interface-engineered CoMo/CoTe electrocatalyst, consisting of an amorphous CoMo (a-CoMo) layer-encapsulated crystalline CoTe array, achieving the profound optimization of catalytic performance. The experimental results and density functional theory calculations show that the d-band center of the catalyst shifts further upward in contrast with its crystalline-crystalline counterpart, optimizing the electronic structure and the intermediate adsorption, thereby reducing the kinetic barrier of HER. The a-CoMo/CoTe with superhydrophilic/superaerophobic features shows excellent catalytic performance in alkaline, neutral, and simulated seawater environments.
Collapse
Affiliation(s)
- Ting Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xiao Hui Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hong Chuan Fu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Qing Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Bo Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Yao T, Wang H, Ji X, Zhang Q, Meng L, Cheng Y, Chen Y, Han X. Encapsulation of Titanium Disulfide into MOF-Derived N,S-Doped Carbon Nanotablets Toward Suppressed Shuttle Effect and Enhanced Sodium Storage Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311126. [PMID: 38221692 DOI: 10.1002/smll.202311126] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Indexed: 01/16/2024]
Abstract
Titanium disulfide (TiS2) is a promising anode material for sodium-ion batteries due to its high theoretical capacity, but it suffers from severe volume variation and shuttle effect of the intermediate polysulfides. To overcome the drawbacks, herein the successful fabrication of TiS2@N,S-codoped C (denoted as TiS2@NSC) through a chemical vapor reaction between Ti-based metal-organic framework (NH2-MIL-125) and carbon disulfide (CS2) is demonstrated. The C─N bonds enhance the electronic/ionic conductivity of the TiS2@NSC electrode, while the C─S bonds provide extra sodium storage capacity, and both polar bonds synergistically suppress the shuttle effect of polysulfides. Consequently, the TiS2@NSC electrode demonstrates outstanding cycling stability and rate performance, delivering reversible capacities of 418/392 mAh g-1 after 1000 cycles at 2/5 A g-1. Ex situ X-ray photoelectron spectroscopy and transmission electron microscope analyses reveal that TiS2 undergoes an intercalation-conversion ion storage mechanism with the generation of metallic Ti in a deeper sodiation state, and the pristine hexagonal TiS2 is electrochemically transformed into cubic rock-salt TiS2 as a reversible phase with enhanced reaction kinetics upon sodiation/desodiation cycling. The strategy to encapsulate TiS2 in N,S-codoped porous carbon matrices efficiently realizes superior conductivity and physical/chemical confinement of the soluble polysulfides, which can be generally applied for the rational design of advanced electrodes.
Collapse
Affiliation(s)
- Tianhao Yao
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hongkang Wang
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Shaanxi Fengxi Zhiyuan New Material Technology Co., Ltd, Xi'an, 710049, P. R. China
| | - Xin Ji
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qingmiao Zhang
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- School of Chemistry & Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lingjie Meng
- School of Chemistry & Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yonghong Cheng
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yu Chen
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaogang Han
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Zhang L, Chen Y, Yu L, Tao X, Tang L, Ye L, Liu Y, Han L, Li H, Ling Y, Zhu G, Jin H. Efficient sulfur atom-doped three-dimensional porous MXene-assisted sodium ion batteries. Dalton Trans 2024; 53:6583-6591. [PMID: 38353272 DOI: 10.1039/d3dt04312f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Recently, it has been reported that MXene is a promising pseudocapacitive material for energy storage, primarily due to its intercalation mechanism. However, Ti3C2Tx MXenes face challenges, such as inadequate layer spacing and low specific capacity, which greatly hinder their potential as anode materials for sodium storage. In this study, MXene was doped with sulfur to create a three-dimensional porous structure that resulted in an increased layer spacing. The sulfur-doped porous MXene (SPM) demonstrated exceptional performance as sodium ion battery anodes, with a capacity of 335.2 mA h g-1 after 490 cycles at 2 A g-1 and a long-term cycling performance of 256.1 mA h g-1 even after 2480 cycles at 5 A g-1. It is worth noting that the porous structure formed after sulfur-doping exhibits superior sodium storage performance compared to previously reported MXene-based electrodes. This highlights the feasibility of the structural construction strategy, offering an effective solution for energy storage and conversion applications.
Collapse
Affiliation(s)
- Linlin Zhang
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Yiguang Chen
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Lianghao Yu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Xin Tao
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Lan Tang
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Liangzheng Ye
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Yu Liu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Lu Han
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Hengzheng Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Yihan Ling
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China.
| | - Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China.
| | - Huile Jin
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
4
|
Wang S, Liu Q, Li S, Huang F, Zhang H. Entropy engineering enhances the electromagnetic wave absorption of high-entropy transition metal dichalcogenides/N-doped carbon nanofiber composites. MATERIALS HORIZONS 2024; 11:1088-1097. [PMID: 38105730 DOI: 10.1039/d3mh01625k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Entropy engineering strategies provide a broader platform for exploring the behavior of electromagnetic wave (EMW) absorption materials and their absorption mechanisms on the microscopic scale. In this work, a novel entropy engineering strategy was developed to improve the EMW absorption properties of MoS2. A hierarchical N-doped carbon nanofiber/MoS2 (NCNF/MS) composite was synthesized using the electrospinning and hydrothermal methods. Then, the conformational entropy of MoS2 was increased by sequentially integrating elements such as W, Se, and Te. Although MoS2 maintains a single 2H-phase structure throughout the entropy increase process, it triggers a series of complex changes at the microscopic level, including lattice distortion, ingenious electronic structure adjustments, and an increase in defect density. These changes provide more possibilities for the EMW interaction with the absorber, which significantly enhances the dielectric behavior of the composites, including conduction and polarization losses. Owing to the unique hierarchical structure and rich defect structure, the obtained entropy-increased NCNF/MWSST exhibits excellent EMW absorption performance. The minimum reflection loss reaches -60.7 dB, and the maximum effective absorption bandwidth is 6.48 GHz, which is improved by almost 584% and 810% compared to NCNF/MS. This study provides a new way to design efficient and high-performance MoS2-based absorbers and provides valuable insights for exploring the entropy-increasing strategies to optimize the EMW absorption properties.
Collapse
Affiliation(s)
- Shipeng Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Qiangchun Liu
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Shikuo Li
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Fangzhi Huang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, PR China.
| | - Hui Zhang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
5
|
Cheng T, Tian J, Du J, Wang Z, Ye J, Liu A, Chen Q, Zhu Y. Self-Interface in Rh Nanosheets-Supported Tetrahedral Rh Nanocrystals for Promoting Electrocatalytic Oxidation of Ethanol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306221. [PMID: 37803408 DOI: 10.1002/smll.202306221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/17/2023] [Indexed: 10/08/2023]
Abstract
Direct ethanol fuel cells hold great promise as a power source. However, their commercialization is limited by anode catalysts with insufficient selectivity toward a complete oxidation of ethanol for a high energy density, as well as sluggish catalytic kinetics and low stability. To optimize the catalytic performance, rationally tuning surface structure or interface structure is highly desired. Herein, a facile route is reported to the synthesis of Rh nanosheets-supported tetrahedral Rh nanocrystals (Rh THs/NSs), which possess self-supporting homogeneous interface between Rh tetrahedrons and Rh nanosheets. Due to full leverage of the structural advantages within the given structure and construction of interfaces, the Rh THs/NSs can serve as highly active electro-catalysts with excellent mass activity and selectivity toward ethanol electro-oxidation. The in situ Fourier transform infrared reflection spectroscopy showed the Rh THs/NSs exhibit the highest C1 pathway selectivity of 23.2%, far exceeding that of Rh nanotetrahedra and Rh nanosheets. Density function theory calculations further demonstrated that self-interface between Rh nanosheets and tetrahedra is beneficial for C-C bond cleavage of ethanol. Meanwhile, the self-supporting of 2D nanosheets greatly enhance the stability of tetrahedra, which improves the catalytic stability.
Collapse
Affiliation(s)
- Tianchun Cheng
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jinshu Tian
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jiafeng Du
- College of Chemical and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhi Wang
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jinyu Ye
- College of Chemical and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Aihua Liu
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qiaoli Chen
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yihan Zhu
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
6
|
Zhao Y, Zheng X, Gao P, Li H. Recent advances in defect-engineered molybdenum sulfides for catalytic applications. MATERIALS HORIZONS 2023; 10:3948-3999. [PMID: 37466487 DOI: 10.1039/d3mh00462g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Electrochemical energy conversion and storage driven by renewable energy sources is drawing ever-increasing interest owing to the needs of sustainable development. Progress in the related electrochemical reactions relies on highly active and cost-effective catalysts to accelerate the sluggish kinetics. A substantial number of catalysts have been exploited recently, thanks to the advances in materials science and engineering. In particular, molybdenum sulfide (MoSx) furnishes a classic platform for studying catalytic mechanisms, improving catalytic performance and developing novel catalytic reactions. Herein, the recent theoretical and experimental progress of defective MoSx for catalytic applications is reviewed. This article begins with a brief description of the structure and basic catalytic applications of MoS2. The employment of defective two-dimensional and non-two-dimensional MoSx catalysts in the hydrogen evolution reaction (HER) is then reviewed, with a focus on the combination of theoretical and experimental tools for the rational design of defects and understanding of the reaction mechanisms. Afterward, the applications of defective MoSx as catalysts for the N2 reduction reaction, the CO2 reduction reaction, metal-sulfur batteries, metal-oxygen/air batteries, and the industrial hydrodesulfurization reaction are discussed, with a special emphasis on the synergy of multiple defects in achieving performance breakthroughs. Finally, the perspectives on the challenges and opportunities of defective MoSx for catalysis are presented.
Collapse
Affiliation(s)
- Yunxing Zhao
- School of Materials, Sun Yat-sen University, Guangzhou 510275, China.
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xiaolin Zheng
- Department of Mechanical Engineering, Stanford University, California 94305, USA.
| | - Pingqi Gao
- School of Materials, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 637553, Singapore
- Centre for Micro-/Nano-electronics (NOVITAS), School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|