1
|
Qi SC, Ding YH, Ding ZP, Zheng L, Zhang MJ, Li YJ, Liu XQ, Sun LB. Positively Photo-Responsive Adsorption Over Binary Copper Porphyrin Framework and Graphene Film Sorbents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406621. [PMID: 39344540 DOI: 10.1002/smll.202406621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Photo-responsive adsorption has emerged as a vibrant area because it provides a promising route to reduce the energy consumption of the traditional adsorption separation. However, the current methodology to fabricate photo-responsive sorbents is still subject to the photo-deforming molecular units. In this study, a new initiative of photo-dissociated electron-hole pairs is proposed to generate amazing adsorption activity, and prove its feasibility. Employing CuPP [PP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] framework nanosheets compounded with graphene, binary film (BF) sorbents are successfully fabricated. The paradigmatic BF nanostructure brings about efficiently photo-excited electron-hole pairs with durable enough lifetime to meet the needs of microscopic adsorption equilibrium, which ultimately alters the electron density distribution of adsorption surface, and thus markedly modulates the adsorption activity. Therefore, an amazing photo-enhanced adsorption capability for the index gas CO can be gotten. Once exposed to the visible-light at 420 nm, the CO adsorption capacity (0 °C, 1 bar) is risen from 0.23 mmol g-1 in the darkness to 1.66 mmol g-1, changed by + 622%. This is essentially different from majority of current photo-responsive sorbents based on photo-deforming molecular units, of which adsorption capability is only decreased with photo-induction, and the maximum rate of change reported is just -54%.
Collapse
Affiliation(s)
- Shi-Chao Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yu-Hang Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhang-Peng Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Li Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Meng-Jun Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yu-Jiao Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
2
|
Liu Q, Ding L, Fu J, Zheng B, Yu D, Bai H, Tian Q, Fan B, Liu Y, Pang S, Liu Y. Enhancing the Efficiency and Stability of Inverted Perovskite Solar Cells and Modules through Top Interface Modification with N-type Semiconductors. Angew Chem Int Ed Engl 2024:e202416390. [PMID: 39516180 DOI: 10.1002/anie.202416390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/27/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The interface modification between perovskite and electron transport layer (ETL) plays a crucial role in achieving high performance inverted perovskite photovoltaics (i-PPVs). Herein, non-fullerene acceptors (NFAs), known as Y6-BO and Y7-BO, were utilized to modify the perovskite/ETL interface in i-PPVs. Non-polar solvent-soluble NFAs can effectively passivate surface defects without structural damage of the underlying perovskite films. Additionally, the improved phenyl-C61-butyric acid methyl ester (PCBM) ETL induced by NFAs modification significantly accelerates the electrons extraction. As a result, both Y6-BO and Y7-BO exhibit more effective interface modification effects compared to traditional PI molecules. The power conversion efficiency (PCE) of the inverted perovskite solar cell (i-PSC) modified with Y7-BO reaches 25.82 %. Moreover, the adoption of non-polar solvents and the superior semiconductor properties of Y7-BO molecules also enable perovskite solar modules (i-PSM) with effective areas of 50 cm2, 400 cm2, and 1160 cm2 to achieve record efficiencies of 23.05 %, 22.32 %, and 21.1 % (certified PCE), respectively, making them the best PCE reported in the literature. Importantly, enhanced interface mechanical strength between the perovskite and PCBM layer results in significantly improved environmental and operational stability of the cells. The cells modified with Y7-BO maintained 94.4 % of the initial efficiency after 1522 hours of maximum power point aging.
Collapse
Affiliation(s)
- Qiuju Liu
- School of Materials Science and Engineering (MSE), NingboTech University, No. 1 South Qianhu Road, Ningbo, 315211, China
- Kunshan GCL Optoelectronic Material Co., Ltd., Kunshan, Jiangsu, 215300, China
| | - Lei Ding
- Centre for Atomaterials and Nanomanufacturing, School of Science, RMIT University, Melbourne, 3000 Victoria, Australia
| | - Jianfei Fu
- School of Materials Science and Engineering (MSE), NingboTech University, No. 1 South Qianhu Road, Ningbo, 315211, China
| | - Bolin Zheng
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China
| | - Dongsheng Yu
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium Based Battery, Henan Key Laboratory of Special Protective Materials, Henan Key Laboratory of Green Building Materials Manufacturing and Intelligent Equipment, Material Science and Engineering School, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Hua Bai
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qingyong Tian
- Kunshan GCL Optoelectronic Material Co., Ltd., Kunshan, Jiangsu, 215300, China
| | - Bin Fan
- Kunshan GCL Optoelectronic Material Co., Ltd., Kunshan, Jiangsu, 215300, China
| | - Yanfeng Liu
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing, 314001, China
| | - Shuping Pang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Qingdao, 266101, China
| | - Yang Liu
- School of Materials Science and Engineering (MSE), NingboTech University, No. 1 South Qianhu Road, Ningbo, 315211, China
| |
Collapse
|
3
|
Lu X, Zhang K, Niu X, Ren DD, Zhou Z, Dang LL, Fu HR, Tan C, Ma L, Zang SQ. Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem Soc Rev 2024; 53:6694-6734. [PMID: 38747082 DOI: 10.1039/d3cs01026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
4
|
Chen Y, Li B, Ye Y, Zhang X, Wang B, Fan H, Yuliarto B, Osman SM, Yamauchi Y, Yin Y. Stable FAPbI 3 Perovskite Solar Cells via Alkylammonium Chloride-Mediated Crystallization Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28402-28408. [PMID: 38768300 DOI: 10.1021/acsami.4c01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
α-Phase formamidinium lead iodide (FAPbI3) perovskite solar cells (PSCs) have garnered significant attention, owing to their remarkable efficiency. Methylammonium chloride (MACl), a common additive, is used to control the crystallization of FAPbI3, thereby facilitating the formation of the photoactive α-phase. However, MACl's high volatility raises concerns regarding its stability and potential impact on the stability of the device. In this study, we partially substituted MACl with n-propylammonium chloride (PACl), which has a long alkyl chain, to promote the oriented crystallization of FAPbI3, ultimately forming an δ-phase-free perovskite. The FAPbI3 film containing PACl demonstrates an enhanced photoluminescence intensity and lifetime. Additionally, PACl's presence at grain boundaries acts as a protective layer for the PSCs. Consequently, we achieved a power conversion efficiency (PCE) of 22.4% and exceptional stability. It maintains over 95% of initial PCE for 100 days in an N2 glovebox, over 85% after 100 h of maximum power point tracking, and over 80% after 60 °C thermal aging.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Boyuan Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Yuxuan Ye
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Xisheng Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Baoning Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Honghong Fan
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Brian Yuliarto
- Advanced Functional Materials Laboratory, Engineering Physics Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Research Center for Nanoscience and Nanotechnology (RCNN), Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Plant & Environmental New Resources and Graduate School of Green-Bio Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Yongqi Yin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
5
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Sahoo R, Pramanik B, Mondal S, Das MC. A Highly Chemically Robust 3D Interpenetrated MOF Heterogeneous Catalyst for the Synthesis of Hantzsch 1,4-Dihydropyridines and Drug Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309281. [PMID: 38191986 DOI: 10.1002/smll.202309281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/26/2023] [Indexed: 01/10/2024]
Abstract
Metal-organic frameworks (MOFs) have attracted immense attention as efficient heterogeneous catalysts over other solid catalysts, however, their chemical environment instability often limits their catalytic potential. Herein, utilizing a flexible unexplored tetra-acid ligand and employing the mixed ligand approach, a 3D interpenetrated robust framework is strategically developed, IITKGP-51 (IITKGP stands for Indian Institute of Technology Kharagpur), which retained its crystallinity over a wide range of pH solution (4-12). Having ample open metal sites (OMSs), IITKGP-51 is explored as a heterogeneous catalyst in one-pot Hantzsch condensation reaction, with low catalyst loading for a broad range of substrates. The synthesis of drug molecules remains one of the most significant and emergent areas of organic and medicinal chemistry. Considering such practical utility, biologically important Nemadipine B and Nifedipine drug molecules (calcium channel protein inhibitor) are synthesized for the first time by using this catalyst and fully characterized via SC-XRD and other spectroscopic methods. This report inaugurates the usage of a MOF material as a catalyst for the synthesis of drug molecules.
Collapse
Affiliation(s)
- Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Bikram Pramanik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Supriya Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
7
|
Yang B, Cang J, Li Z, Chen J. Nanocrystals as performance-boosting materials for solar cells. NANOSCALE ADVANCES 2024; 6:1331-1360. [PMID: 38419867 PMCID: PMC10898446 DOI: 10.1039/d3na01063e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Nanocrystals (NCs) have been widely studied owing to their distinctive properties and promising application in new-generation photoelectric devices. In photovoltaic devices, semiconductor NCs can act as efficient light harvesters for high-performance solar cells. Besides light absorption, NCs have shown great significance as functional layers for charge (hole and electron) transport and interface modification to improve the power conversion efficiency and stability of solar cells. NC-based functional layers can boost hole/electron transport ability, adjust energy level alignment between a light absorbing layer and charge transport layer, broaden the absorption range of an active layer, enhance intrinsic stability, and reduce fabrication cost. In this review, recent advances in NCs as a hole transport layer, electron transport layer, and interfacial layer are discussed. Additionally, NC additives to improve the performance of solar cells are demonstrated. Finally, a summary and future prospects of NC-based functional materials in solar cells are presented, addressing their limitations and suggesting potential solutions.
Collapse
Affiliation(s)
- Boping Yang
- College of Science, Guizhou Institute of Technology Guiyang 550003 China
| | - Junjie Cang
- School of Electrical Engineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Zhiling Li
- College of Science, Guizhou Institute of Technology Guiyang 550003 China
| | - Jian Chen
- College of Artificial Intelligence and Electrical Engineering, Guizhou Institute of Technology Guiyang 550003 China
| |
Collapse
|
8
|
Khan MI, Mujtaba A, Fatima M, Marzouki R, Hussain S, Anwar T. Impact of Ce doping on the optoelectronic and structural properties of a CsPbIBr 2 perovskite solar cell. Phys Chem Chem Phys 2024; 26:4166-4173. [PMID: 38230486 DOI: 10.1039/d3cp05339c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This paper provides a detailed analysis of pure CsPbIBr2 and 4% Ce-doped CsPbIBr2 perovskite films, emphasizing their structural, optical and photovoltaic properties. X-ray diffraction confirms a predominant cubic perovskite phase in both samples, with Ce doping leading to the increased crystal size (21 nm to 32 nm). UV-vis spectroscopy reveals a reduced bandgap energy (2.2 eV to 2.1 eV) with Ce doping. Dielectric constant analysis indicates the enhanced permittivity of the Ce-doped sample, crucial for solar-cell light trapping. Energy band structure analysis demonstrates improved photovoltaic cell performance with Ce doping, yielding higher open-circuit voltage, short-circuit current, and efficiency (9.71%) compared to pure CsPbIBr2 (8.02%). Ce doping mitigates electron-hole recombination, enhancing cell stability, electron affinity, and power output. This research underscores the potential of cost-effective, efficient, and stable CsPbIBr2 perovskite solar cells.
Collapse
Affiliation(s)
- M I Khan
- Department of Physics, The University of Lahore, 53700, Pakistan.
| | - Ali Mujtaba
- Department of Physics, The University of Lahore, 53700, Pakistan.
| | - Mahvish Fatima
- Department of physics, Deanship of educational services, Qassim university, Buraidah 51452, Saudi Arabia
| | - Riadh Marzouki
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413 Abha, saudi Arabia
| | - Saddam Hussain
- Department of Physics, The University of Lahore, 53700, Pakistan.
| | - Tauseef Anwar
- Department of Physics, Division of Science & Technology, University of Education Lahore, Lahore 54770, Pakistan
| |
Collapse
|
9
|
Zhang K, Zhang L, Saravana Karthikeyan SKS, Kong CY, Zhang F, Guo X, Dang NN, Ramaraj SG, Liu X. Structural, electronic, optical, elastic, thermodynamic and thermal transport properties of Cs 2AgInCl 6 and Cs 2AgSbCl 6 double perovskite semiconductors using a first-principles study. Phys Chem Chem Phys 2023; 25:31848-31868. [PMID: 37968998 DOI: 10.1039/d3cp03795a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
In this study, we employ the framework of first-principles density functional theory (DFT) computations to investigate the physical, electrical, bandgap and thermal conductivity of Cs2AgInCl6-CAIC (type I) and Cs2AgSbCl6-CASC (type II) using the GGA-PBE method. CAIC possesses a direct band gap energy of 1.812 eV, while CASC demonstrates an indirect band gap energy of 0.926 eV. The CAIC and CASC exhibit intriguingly reduced thermal conductivity, which can be attributed to the notable reduction in their respective Debye temperatures, measuring 182 K and 135 K, respectively. The Raman active modes computed under ambient conditions have been compared with real-world data, showing excellent agreement. The thermal conductivity values of CAIC and CASC compounds exhibit quantum mechanical characteristics, with values of 0.075 and 0.25 W m-1 K-1, respectively, at 300 K. It is foreseen that these outcomes will generate investigations concerning phosphors and diodes that rely on single emitters, with the aim of advancing lighting and display technologies in the forthcoming generations.
Collapse
Affiliation(s)
- Keqing Zhang
- School of Chemical Engineering, Henan Technical Institute, Zhengzhou, Henan, 450042, P. R. China
| | - Lijun Zhang
- School of Chemical Engineering, Henan Technical Institute, Zhengzhou, Henan, 450042, P. R. China
| | - S K S Saravana Karthikeyan
- Department of Environment and Energy System, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Chang Yi Kong
- Department of Environment and Energy System, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China
| | - Xiang Guo
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China.
| | - Nam Nguyen Dang
- Future Materials & Devices Lab., Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam
- The Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang, Vietnam
| | - Sankar Ganesh Ramaraj
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan.
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai - 602105, Tamilnadu, India
| | - Xinghui Liu
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China.
- Division of Research and Development, Lovely Professional University, Phagwara, 144411, India
| |
Collapse
|
10
|
Shi Y, Chen Y, Dong H, Wang H, Qian P. Investigation of phase transition, mechanical behavior and lattice thermal conductivity of halogen perovskites using machine learning interatomic potentials. Phys Chem Chem Phys 2023; 25:30644-30655. [PMID: 37933446 DOI: 10.1039/d3cp04657e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Using a machine learning (ML) approach to fit DFT data, interatomic potentials have been successfully extracted. In this study, the phase transition, mechanical behavior and lattice thermal conductivity are investigated for halogen perovskites using NEP-based MD simulations in a large supercell including 16 000 atoms, which breaks through the size and temperature effects in DFT. A clear phase transition from orthorhombic (γ) → tetragonal (β) → cubic (α) is observed during the heating process. During the cooling process, CsPbCl3 and CsPbBr3 exhibit perfect reversible behavior, while CsPbI3 only undergoes a phase transition from α to β. Then, the key mechanical parameters, including Poisson's ratio, tensile strength, critical strain and bulk modulus, are predicted. The thermal conductivity is also investigated using the NEP-based MD simulations. At room temperature, they exhibit extremely low thermal conductivity. The predicted results are compared with the experimental results, and the rationality of ML potentials has been confirmed.
Collapse
Affiliation(s)
- Yongbo Shi
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, P. R. China.
| | - Yuanyuan Chen
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, P. R. China.
| | - Haikuan Dong
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, P. R. China.
| | - Hao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Ping Qian
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| |
Collapse
|
11
|
Wang W, Zhang J, Lin K, Wang J, Zhang X, Hu B, Dong Y, Xia D, Yang Y. Lanthanide 3D Supramolecular Framework Boosts Stable Perovskite Solar Cells with High UV Utilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306140. [PMID: 37830784 DOI: 10.1002/adma.202306140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/03/2023] [Indexed: 10/14/2023]
Abstract
In this work, the ligand-to-metal charge transition and Förster resonance energy transfer process is exploited to derive lanthanide-organic framework (Tb-cpon) modified perovskite solar cells (PSCs) with enhanced performance under UV irradiation. Tb-cpon-modified PSCs exhibit rapid response and reduced degradation due to energy downconversion facilitated by effective coupling of UV-sensitive chromophores to lanthanide luminescent centers, enhancing the spectral response range of the composite films. Furthermore, the characteristic changes of precursor particle sizes suggest formation of Tb-cpon adducts as intermediate products, leading to enhanced crystallinity and reduced defect concentrations in the Tb-cpon-perovskite hybrid film. Accordingly, the Tb-cpon-modified PSC devices obtain a champion efficiency up to 23.72% as well as a sensitive photovoltaic conversion even under pure UV irradiation. Moreover, the unencapsulated devices maintain more than 80% of the initial efficiency after continuous irradiation under a 310 nm UV lamp for 24 h (from the Au electrode side), compared to 21% for the control devices.
Collapse
Affiliation(s)
- Wei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Kaifeng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jiaqi Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xingrui Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Boyuan Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yayu Dong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
12
|
Sahoo R, Mondal S, Chand S, Manna AK, Das MC. A Water-Stable Cationic SIFSIX MOF for Luminescent Probing of Cr 2 O 7 2- via Single-Crystal to Single-Crystal Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304581. [PMID: 37501327 DOI: 10.1002/smll.202304581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Indexed: 07/29/2023]
Abstract
The sensing and monitoring of toxic oxo-anion contaminants in water are of significant importance to biological and environmental systems. A rare hydro-stable SIFSIX metal-organic framework, SiF6 @MOF-1, {[Cu(L)2 (H2 O)2 ]·(SiF6 )(H2 O)}n , with exchangeable SiF6 2- anion in its pore is strategically designed and synthesized, exhibiting selective detection of toxic Cr2 O7 2- oxo-anion in an aqueous medium having high sensitivity, selectivity, and recyclability through fluorescence quenching phenomena. More importantly, the recognition and ion exchange mechanism is unveiled through the rarely explored single-crystal-to-single crystal (SC-SC) fashion with well-resolved structures. A thorough SC-SC study with interfering anions (Cl- , F- , I- , NO3 - , HCO3 - , SO4 2- , SCN- , IO3 - ) revealed no such transformations to take place, as per line with quenching studies. Density functional theory calculations revealed that despite a lesser binding affinity, Cr2 O7 2- shows strong orbital mixing and large driving forces for electron transfer than SiF6 2- , and thus enlightens the fluorescence quenching mechanism. This work inaugurates the usage of a SIFSIX MOF toward sensing application domain under aqueous medium where hydrolytic stability is a prime concern for their plausible implementation as sensor materials.
Collapse
Affiliation(s)
- Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, WB, 721302, India
| | - Supriya Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, WB, 721302, India
| | - Santanu Chand
- Department of Chemistry, Indian Institute of Technology Kharagpur, WB, 721302, India
| | - Arun K Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, AP, 517619, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, WB, 721302, India
| |
Collapse
|