1
|
Fatima M, Qamar MT, Zahra M, Sohail MT, Bahadur A, Iqbal S, Mahmood S, Awwad NS, Ibrahium HA. Evaluation of a novel composite of expanded polystyrene with rGO and SEBS-g-MA. Microsc Res Tech 2024; 87:1965-1973. [PMID: 38590279 DOI: 10.1002/jemt.24567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
This study displays the effect of reduced graphene oxide (rGO) nanofiller and polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene-grafted maleic anhydride (SEBS-g-MA) on the optical, thermal, and mechanical features of expanded polystyrene (EPS). First, the thin films of pristine EPS and composites were prepared using solution cast method. The prepared films were subjected to fourier-transform infrared (FTIR), SEM, UV-visible spectrophotometer, thermogravimetric analysis/differential scanning calorimetry, and universal testing machine for structural, morphological, optical, thermal, and mechanical characterizations. Optical study revealed a significant increase in refractive index and absorption of composites than EPS. Indirect band-gap energy of EPS (~4.08 eV) was reduced to ~1.61 eV for rGO composite and ~ 2.23 eV for composite composed of rGO and SEBS-g-MA. Thermal analyses presented improvement in characterization temperatures such as T10, T50, Tp, Tm, and Tg of composites, which ultimately lead to the thermal stability of prepared composites than pristine EPS. Stress-strain curves displayed higher yield strength (46.62 MPa), Young's modulus (96.29 MPa), and strain at break (0.54%) for EPS+rGO composite than pure EPS having stress at break (1.01 MPa), Young's modulus (12.44 MPa), and strain at break (0.08%). Moreover, ductility with relatively higher strain at break (0.61%) and lower Young's modulus (79.32 MPa) and yield strength (32.98 MPa) was noticed in EPS+rGO+SEBS-g-MA composite than EPS+rGO composite film. Morphological analysis revealed a change in globular morphology of EPS and inhomogeneous dispersion of rGO in EPS to homogeneously dispersed rGO in EPS matrix without globules owing to the addition of SEBS-g-MA. The increase in compatibility of EPS and rGO due to SEBS-g-MA was also observed in FTIR spectra. RESEARCH HIGHLIGHTS: Here, the solution casting approach was used to create the composite film of EPS and rGO with globules of various sizes. After adding SEBS-g-MA, the shape altered to globular free films exhibiting homogenous dispersion of rGO in EPS matrix. An optical investigation showed that composite materials had a significantly higher refractive index and absorption than EPS. The optical, thermal, and mechanical investigations suggest that the produced composites may be a great substitute for virgin EPS, allowing for a wider range of applications.
Collapse
Affiliation(s)
- Mahrukh Fatima
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Muhammad Tariq Qamar
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Manzar Zahra
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Muhammad Tahir Sohail
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ali Bahadur
- Department of Chemistry, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, New Jersey, USA
| | - Shahid Iqbal
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Sajid Mahmood
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
- Functional Materials Group, Gulf University for Science and Technology, Mishref, Kuwait
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
2
|
Yu C, Gu B, Bao M, Chen J, Shi W, Ye J, Zhang W. In Situ Electrochemical Construction of CuN 3@CuCl Hybrids for Controllable Energy Release and Self-Passivation Ability. Inorg Chem 2024; 63:1642-1651. [PMID: 38198689 DOI: 10.1021/acs.inorgchem.3c03829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Advanced energetic materials (EMs) play a crucial role in the advancement of microenergetic systems as actuation parts, igniters, propulsion units, and power. The sustainable electrosynthesis of EMs has gained momentum and achieved substantial improvements in the past decade. This study presents the facile synthesis of a new type of high-performance CuN3@CuCl hybrids via a co-electrodeposition methodology utilizing porous Cu as the sacrificial template. The composition, morphology, and energetic characteristics of the CuN3@CuCl hybrids can be easily tuned by adjusting the deposition times. The resulting hybrids demonstrate remarkable energy output (1120 J·g-1) and good laser-induced initiating ability. As compared with porous CuN3, the uniform doping of inert CuCl enhances the electrostatic safety of the hybridized material without compromising its overall energetic characteristics. Notably, the special oxidizing behavior of CuCl gradually lowers the susceptibility of the hybrid material to laser and electrostatic stimulation. This has significant implications for the passivation or self-destruction of highly sensitive EMs. Overall, this study pioneers a new path for the development of MEMS-compatible EMs, facilitating further microenergetic applications.
Collapse
Affiliation(s)
- Chunpei Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Bonan Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Minghao Bao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Junhong Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Wei Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Jiahai Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Wenchao Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Du W, Tang P, Yang B, Yang L, Li X, Duan M, Gou S, Ma Q. Metal-Free Hybrid Energetic Composites Based on Donor-Acceptor π-Conjugated Organic Energetic Catalysts with Enlightening the Laser Ignition Performance of Multi-Scale Ammonium Perchlorate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303678. [PMID: 37475508 DOI: 10.1002/smll.202303678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/01/2023] [Indexed: 07/22/2023]
Abstract
Photosensitive materials, such as energetic complexes, usually have high sensitivity and cause heavy-metal pollution, whereas others, like carbon black and dye, do not contain energy, which affects energy output and mechanical properties. In this work, donor-acceptor π-conjugated energetic catalysts, denoted as D-n, are designed and synthesized. Nonmetallic hybrid energetic composites are prepared by assembling the as-synthesized catalysts into multiscale ammonium perchlorate (AP). Composites containing catalysts and APs can be successfully ignited without the involvement of metals. The new ignition mechanism is further analyzed using experimental and theoretical analyses such as UV-vis-near-infrared (NIR) spectra, electron-spin resonance spectroscopy, and energy-gap analysis. The shortest ignition delay time is 56 ms under the experimental condition of a NIR wavelength of 1064 nm and a laser power of 10 W. At the voltage of 1 kV and the electric field of 500 V mm-1 , the laser-ignition delay time of D-2/AP hybrid composite decreases from 56 to 35 ms because D-2 also exhibits organic semiconductor-like properties. D-2/AP and D-12/AP can also be used to successfully laser ignite other common energetic materials. This study can guide the development of advanced metal-free laser-ignitable energetic composites to address challenges in the field of aerospace engineering.
Collapse
Affiliation(s)
- Wei Du
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Pengfei Tang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Bo Yang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Lei Yang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Xiaodong Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Ming Duan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Shaohua Gou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Qing Ma
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| |
Collapse
|
4
|
Wang TW, Zhang C, Lu ZJ, Xie ZM, Kuang BL, Yi ZX, Li Y, Zhang JG. Preparation of High-Energy ECPs by Retaining the Coordination Ability of Carbohydrazide Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37356112 DOI: 10.1021/acs.langmuir.3c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
In order to preserve the coordinating ability of the hydrazide group, we used retrosynthetic analysis to design and synthesize ligand furan-2,5-dicarbohydrazide and its complex [Cu(FDCA)(H2O)ClO4]n(ClO4)n·nH2O (ECPs-1·H2O). The structure of the product was confirmed by single-crystal X-ray diffraction, infrared spectroscopy, and elemental analysis. The solvent-free target material ECPs-1 exhibited good thermal stability, sensitivity to mechanical stimuli, and excellent explosive properties. Furthermore, it had good potential for laser ignition and comparable detonation power to LA. The simple preparation method and inexpensive starting materials enriched the research on primary explosives.
Collapse
Affiliation(s)
- Ting-Wei Wang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Chao Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zu-Jia Lu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhi-Ming Xie
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Bao-Long Kuang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen-Xin Yi
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu, Nanjing 210094, China
| | - Yan Li
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu, Nanjing 210094, China
| | - Jian-Guo Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|