1
|
Sun X, Wen Z, Liu Y, Zhang M, Li W, Sheng C, Yang S, Zhou H, He P. A Hydrogel Electrolyte-Based Zn-CO 2 Battery with Improved Life. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411867. [PMID: 39901662 DOI: 10.1002/smll.202411867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/20/2025] [Indexed: 02/05/2025]
Abstract
Environmental-friendly aqueous Zn-CO2 batteries present bifunctional potentials of achieving carbon neutrality and energy storage. Nonetheless, anode corrosions derived from H2O molecules and high risks of volatilization and leakage hinder the advancement of Zn-CO2 batteries. In this work, polyvinyl alcohol (PVA)-based hydrogel electrolyte with fast ion diffusion kinetics, high mechanical strength, and flexibility is developed to replace liquid electrolyte. Since hydroxyl radicals in the polymer chain can interact with H2O and Zn2+, electrode corrosion from free H2O and active H2O around Zn2+ is significantly inhibited, facilitating the uniform deposition of Zn2+ cations. The introduction of an ionic liquid plasticizer further enhances the interaction between Zn2+ and polymer backbone, as well as amorphous extent of the electrolyte. The hydrogel electrolyte possesses adequate self-healing ability, whose ionic conductivity reaches 7.95 × 10-3 S cm-1. The symmetric Zn metal batteries containing the electrolyte remain steady for >2000 h under different current densities. Furthermore, the Zn-CO2 battery based on Ru nanoparticles cathode and hydrogel electrolyte realizes a discharge capacity of 6028 mAh g-1 and stable cyclicity for 90 times. The reaction path of hydrogel electrolyte-based Zn-CO2 battery is that CO2 is reduced to ZnCO3 and C species followed by reversible decomposition of discharge products on recharge.
Collapse
Affiliation(s)
- Xinyi Sun
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Zhang Wen
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yiwen Liu
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Min Zhang
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Wei Li
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Chuanchao Sheng
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Sixie Yang
- School of Materials Science and Intelligent Engineering, Nanjing University, Suzhou, 215163, P. R. China
| | - Haoshen Zhou
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Ping He
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
2
|
Kim JH, Kim J, Ma J, Cho JH, Jeong J, Iimura S, Jang HW, Kim SY. Spontaneous Metal-Chelation Strategy for Highly Dense Ni Single-Atom Catalysts with Asymmetric Coordination in CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409481. [PMID: 39668429 DOI: 10.1002/smll.202409481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Indexed: 12/14/2024]
Abstract
Developing metal-nitrogen-doped carbon single-atom catalysts (M-NC SACs) with high loadings for the electrochemical CO2 reduction reaction (eCO2RR) remains challenging owing to the risk of metal aggregation. Herein, the study presents a facile strategy for synthesizing M-NC SACs using metal-chelating ligands, eliminating the need for additional processing steps. Specifically, using ethylenediaminetetraacetic acid as a strong metal-chelating ligand, the formation of Ni nanoparticles is effectively prevented and a high loading of ≈2.7 wt.% is achieved, leading to the development of high-loading Ni SACs. The resulting catalysts exhibit a high CO faradaic efficiency (FECO) of 96.6% and CO partial current density of -120.2 mA cm-2 and retain a FECO over 90% in a broad potential range of -0.4 to -0.9 V versus the reversible hydrogen electrode. Furthermore, theoretical calculations indicate that the asymmetric Ni-N3C1 local coordination structure within the catalyst reveals an optimal balance between *COOH formation and *CO desorption, which enhances the activity for eCO2RR to CO. This study offers an efficient strategy to suppress metal nanoparticle formation while simultaneously improving the metal loading in M-NC SACs.
Collapse
Affiliation(s)
- Jae Hak Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jaehyun Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Joonhee Ma
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jin Hyuk Cho
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jaemin Jeong
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soshi Iimura
- Research Center for Energy and Environmental Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0047, Japan
| | - Ho Won Jang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
3
|
Mao Z, Wei G, Liu L, Hao T, Wang X, Tang S. Synergistic effect of multi-metal site provided by Ni-N 4, adjacent single metal atom, and Fe 6 nanoparticle to boost CO 2 activation and reduction. J Colloid Interface Sci 2025; 679:860-867. [PMID: 39486225 DOI: 10.1016/j.jcis.2024.10.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/28/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Single transition metal (TM) atom embedded in nitrogen-doped carbon materials with M-Nx-C configuration have emerged as a promising class of electrocatalysts for electrochemical CO2 reduction (CO2RR). However, at high TM atom densities, a comprehensive understanding of the active site structure and reaction mechanisms remains a significant challenge, yet it is crucial for enhancing CO2RR performance. In this work, we use first-principles calculations to investigate the electrocatalytic performance of Ni-N4 sites for CO2 reduction to CO, co-assisted by neighboring TM atoms and a Fe6 nanoparticle. Unlike many previously studied Ni-N4 catalysts that maintain a linear CO2 structure, the combination of adjacent TM atoms and Fe6 induces bending and activation of CO2 at the Ni site, enhancing its protonation to form key *COOH intermediate while maintaining efficient *CO desorption. The newly designed hybrid electrocatalyst demonstrates a synergistic effect of multi-metal sites in boosting CO2 reduction to CO. Specifically, the TM atom facilitates C-Ni bond formation between the Ni site and *CO2/*COOH species, while Fe6 forms an Fe…O coordination bond. Detailed analysis of reaction mechanisms and energetics show that Ni-N4, co-assisted by a single TM atom and Fe6 (especially TM = Ni, Cu, or Ag), exhibits enhanced catalytic activity for CO production with a low limiting potential of -0.5 V. This work presents an effective strategy for improving the catalytic activity of single-atom catalysts (SACs) at high metal content.
Collapse
Affiliation(s)
- Zongchang Mao
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China
| | - Guanping Wei
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China
| | - Lingli Liu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China
| | - Tiantian Hao
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China
| | - Xijun Wang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Shaobin Tang
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China; Engineering Research Center of Bamboo Advanced Materials and Conversion of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China.
| |
Collapse
|
4
|
Guo K, Bao L, Yu Z, Lu X. Carbon encapsulated nanoparticles: materials science and energy applications. Chem Soc Rev 2024; 53:11100-11164. [PMID: 39314168 DOI: 10.1039/d3cs01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The technological implementation of electrochemical energy conversion and storage necessitates the acquisition of high-performance electrocatalysts and electrodes. Carbon encapsulated nanoparticles have emerged as an exciting option owing to their unique advantages that strike a high-level activity-stability balance. Ever-growing attention to this unique type of material is partly attributed to the straightforward rationale of carbonizing ubiquitous organic species under energetic conditions. In addition, on-demand precursors pave the way for not only introducing dopants and surface functional groups into the carbon shell but also generating diverse metal-based nanoparticle cores. By controlling the synthetic parameters, both the carbon shell and the metallic core are facilely engineered in terms of structure, composition, and dimensions. Apart from multiple easy-to-understand superiorities, such as improved agglomeration, corrosion, oxidation, and pulverization resistance and charge conduction, afforded by the carbon encapsulation, potential core-shell synergistic interactions lead to the fine-tuning of the electronic structures of both components. These features collectively contribute to the emerging energy applications of these nanostructures as novel electrocatalysts and electrodes. Thus, a systematic and comprehensive review is urgently needed to summarize recent advancements and stimulate further efforts in this rapidly evolving research field.
Collapse
Affiliation(s)
- Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Chen H, Wang Z, Cui H, Cao S, Chen Z, Zhang Y, Wei S, Liu S, Wei B, Lu X. In-situ construction of iron-modified nickel nanoparticles assisted by hexamethylenetetramine with the internal and external collaboration for highly selective electrocatalytic carbon dioxide reduction. J Colloid Interface Sci 2024; 672:75-85. [PMID: 38833736 DOI: 10.1016/j.jcis.2024.05.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Carbon dioxide (CO2) electroreduction provides a sustainable route for realizing carbon neutrality and energy supply. Up to now, challenges remain in employing abundant and inexpensive nickel materials as candidates for CO2 reduction due to their low activity and favorable hydrogen evolution. Here, the representative iron-modified nickel nanoparticles embedded in nitrogen-doped carbon (Ni1-Fe0.125-NC) with the porous botryoid morphology were successfully developed. Hexamethylenetetramine is used as nitrogen-doped carbon source. The collaboration of internal lattice expansion with electron effect and external confinement effect with size effect endows the significant enhancement in electrocatalytic CO2 reduction. The optimized Ni1-Fe0.125-NC exhibits broad potential ranges for continuous carbon monoxide (CO) production. A superb CO Faradaic efficiency (FECO) of 85.0 % realized at -1.1 V maintains a longtime durability over 35 h, which exceeds many state-of-the-art metal catalysts. Theoretical calculations further confirm that electron redistribution promotes the desorption of CO in the process for favorable CO production. This work opens a new avenue to design efficient nickel-based materials by considering the intrinsic structure and external confinement for CO2 reduction.
Collapse
Affiliation(s)
- Hongyu Chen
- College of Science, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China
| | - Hongzhi Cui
- Jinzhou Oil Production Plant of Liaohe Oilfield, CNPC, PR China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China
| | - Zengxuan Chen
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China
| | - Yi Zhang
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China
| | - Shuxian Wei
- College of Science, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China.
| | - Baojun Wei
- College of Science, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China.
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong 266580, PR China.
| |
Collapse
|
6
|
Peng Y, Chen S, Hu Z, Yin M, Pei L, Wei Q, Xie Z. Guanine-derived carbon nanosheet encapsulated Ni nanoparticles for efficient CO 2 electroreduction. Dalton Trans 2024; 53:9724-9731. [PMID: 38814145 DOI: 10.1039/d4dt00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Developing novel electrocatalysts for achieving high selectivity and faradaic efficiency in the carbon dioxide reduction reaction (CO2RR) poses a major challenge. In this study, a catalyst featuring a nitrogen-doped carbon shell-coated Ni nanoparticle structure is designed for efficient carbon dioxide (CO2) electroreduction to carbon monoxide (CO). The optimal Ni@NC-1000 catalyst exhibits remarkable CO faradaic efficiency (FECO) values exceeding 90% across a broad potential range of -0.55 to -0.9 V (vs. RHE), and attains the maximum FECO of 95.6% at -0.75 V (vs. RHE) in 0.5 M NaHCO3. This catalyst exhibits sustained carbon dioxide electroreduction activity with negligible decay after continuous electrolysis for 20 h. More encouragingly, a substantial current density of 200.3 mA cm-2 is achieved in a flow cell at -0.9 V (vs. RHE), reaching an industrial-level current density. In situ Fourier transform infrared spectroscopy and theoretical calculations demonstrate that its excellent catalytic performance is attributed to highly active pyrrolic nitrogen sites, promoting CO2 activation and significantly reducing the energy barrier for generating *COOH. To a considerable extent, this work presents an effective strategy for developing high-efficiency catalysts for electrochemical CO2 reduction across a wide potential window.
Collapse
Affiliation(s)
- Ying Peng
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou 350016, Fujian, China.
| | - Shuo Chen
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou 350016, Fujian, China.
| | - Zhengli Hu
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou 350016, Fujian, China.
| | - Mengqi Yin
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou 350016, Fujian, China.
| | - Lishun Pei
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou 350016, Fujian, China.
| | - Qiaohua Wei
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou 350016, Fujian, China.
| | - Zailai Xie
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou 350016, Fujian, China.
| |
Collapse
|
7
|
Aslam MK, Wang H, Nie Z, Chen S, Li Q, Duan J. Unlock flow-type reversible aqueous Zn-CO 2 batteries. MATERIALS HORIZONS 2024; 11:2657-2666. [PMID: 38597197 DOI: 10.1039/d4mh00219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Metal-CO2 batteries, which use CO2 as the active species at cathodes, are particularly promising, but device design for mass-producible CO2 reduction and energetic power supply lag behind, limiting their potential benefits. In this study, an aqueous reversible flow-type Zn-CO2 battery using a Pd/SnO2@C cathode catalyst has been assembled and demonstrates an ultra-high discharge voltage of 1.38 V, a peak power density of 4.29 mW cm-2, high-energy efficiency of 95.64% and remarkable theoretical energy density (827.3 W h kg-1). In the meantime, this optimized system achieves a high formate faradaic efficiency of 95.86% during the discharge process at a high rate of 4.0 mA cm-2. This energy- and chemical-conversion technology could store and provide electricity, eliminate CO2 and produce valuable chemicals, addressing current energy and environment issues simultaneously.
Collapse
Affiliation(s)
- Muhammad Kashif Aslam
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Herui Wang
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Zhihao Nie
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Sheng Chen
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Qiang Li
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Jingjing Duan
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
8
|
Ma J, Huang F, Xu A, Wei D, Chen X, Zhao W, Chen Z, Yin X, Zhu J, He H, Xu J. Three-Phase-Heterojunction Cu/Cu 2O-Sb 2O 3 Catalyst Enables Efficient CO 2 Electroreduction to CO and High-Performance Aqueous Zn-CO 2 Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306858. [PMID: 38414314 DOI: 10.1002/advs.202306858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Indexed: 02/29/2024]
Abstract
Zn-CO2 batteries are excellent candidates for both electrical energy output and CO2 utilization, whereas the main challenge is to design electrocatalysts for electrocatalytic CO2 reduction reactions with high selectivity and low cost. Herein, the three-phase heterojunction Cu-based electrocatalyst (Cu/Cu2O-Sb2O3-15) is synthesized and evaluated for highly selective CO2 reduction to CO, which shows the highest faradaic efficiency of 96.3% at -1.3 V versus reversible hydrogen electrode, exceeding the previously reported best values for Cu-based materials. In situ spectroscopy and theoretical analysis indicate that the Sb incorporation into the three-phase heterojunction Cu/Cu2O-Sb2O3-15 nanomaterial promotes the formation of key *COOH intermediates compared with the normal Cu/Cu2O composites. Furthermore, the rechargeable aqueous Zn-CO2 battery assembled with Cu/Cu2O-Sb2O3-15 as the cathode harvests a peak power density of 3.01 mW cm-2 as well as outstanding cycling stability of 417 cycles. This research provides fresh perspectives for designing advanced cathodic electrocatalysts for rechargeable Zn-CO2 batteries with high-efficient electricity output together with CO2 utilization.
Collapse
Affiliation(s)
- Junjie Ma
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Fang Huang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Aihao Xu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Dong Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Xiangyu Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Wencan Zhao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Zhengjun Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Xucai Yin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Jinliang Zhu
- School of Resources, Environment, and Materials, Collaborative Innovation Center of Sustainable Energy Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Huibing He
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
9
|
Li M, Wang J, Cong X, Sun Y, Liu Q, Miao Z, Li Z, Wang L. Confined Ni nanoparticles in N-doped carbon nanotubes for excellent pH-universal industrial-level electrocatalytic CO 2 reduction and Zn-CO 2 battery. J Colloid Interface Sci 2024; 657:738-747. [PMID: 38071822 DOI: 10.1016/j.jcis.2023.11.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 01/02/2024]
Abstract
Electrocatalytic reduction of CO2 (ECR) offers a promising approach to curbed carbon emissions and complete carbon cycles. However, the inevitable creation of carbonates and limited CO2 utilization efficiency in neutral or alkaline electrolytes result in low energy efficiency, carbon losses and its widespread commercial utilization. The advancement of CO2 reduction under acidic conditions offers a promising approach for their commercial utilization, but the inhibition of hydrogen evolution reaction and the corrosion of catalysts are still challenging. Herein, Ni nanoparticles (NPs) wrapped in N-doped carbon nanotubes (NixNC-a) are successfully prepared by a facile mixed-heating and freeze-drying method. Ni100NC-a achieves a high Faraday efficiency (FE) of near 100 % for CO under pH-universal conditions, coupled with a promising current density of CO (>100 mA cm-2). Especially in acidic conditions, Ni100NC-a exhibits an exceptional ECR performance with the high FECO of 97.4 % at -1.44 V and the turnover frequency (TOF) of 11 k h-1 at -1.74 V with a current density of 288.24 mA cm-2. This excellent performance is attributed to the synergistic effect of Ni NPs and N-doped carbon shells, which protects Ni NPs from etching, promotes CO2 adsorption and regulates local pH. Moreover, Ni100NC-a could drive the reversible Zn-CO2 battery with a high power-density of 4.68 mW cm-2 and a superior stability (98 h). This study presents a promising candidate for efficient pH-universal CO2 electroreduction and Zn-CO2 battery.
Collapse
Affiliation(s)
- Meiyin Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Jigang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China.
| | - Xuzi Cong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yinggang Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Qiang Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Zhichao Miao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Zhongfang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
| |
Collapse
|
10
|
Zheng J, Li J, Fu Q, Zhang L, Zhu X, Liao Q. Boosting Carbon Dioxide Reduction in a Photocatalytic Fuel Cell with a Bubbling Fluidized Cathode: Dual Function of Titanium Carbide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16182-16190. [PMID: 37906836 DOI: 10.1021/acs.langmuir.3c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Photoelectrochemical reduction of carbon dioxide (CO2) is a promising avenue to realize resourceful utilization of carbon dioxide and mitigate the energy shortage. Herein, a photocatalytic fuel cell with a bubbling fluidized cathode (PFC-BFC) is proposed to increase the performance of the photocatalytic CO2 reduction reaction (CO2RR). Titanium carbide (Ti3C2) is first used as a fluidized cathode catalyst with the dual features of superior capacitance and high CO2RR catalytic activity. Compared with the conventional PFC system, the as-proposed PFC-BFC system exhibits a higher gas production performance. Particularly, the generation rate and Faraday efficiency for CH4 production reach to 37.2 μmol g-1 h-1 and 72%, which are 10.9 and 6.5 times higher than that of the conventional PFC system, respectively. The bubbling fluidized cathode allows a rapid electron transfer between catalysts and the current collector and an efficient diffusion of catalysts in the whole solution, thus remarkably increasing the effective reaction area of the CO2RR. In addition, the fluidized reaction mechanism of charging/discharging-coupled CO2RR is investigated. Significantly, a magnified PFC-BFC system is designed and exhibits a similar gas generation rate compared to that of the small-scale system, indicating a good potential of scaling up in the industry applications. These results demonstrated that the proposed PFC-BFC system can maximize the utilization of catalyst active sites and enhance the reaction kinetics, providing an alternative design for the application of CO2RR.
Collapse
Affiliation(s)
- Jili Zheng
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Jun Li
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Qian Fu
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Liang Zhang
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Xun Zhu
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Qiang Liao
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| |
Collapse
|
11
|
Zhong L, Pan W, Shi Z, Mao C, Peng J, Huang J. Hollow Nitrogen-Doped porous carbon spheres decorated with atomically dispersed Ni-N 3 sites for efficient electrocatalytic CO 2 reduction. J Colloid Interface Sci 2023; 649:571-580. [PMID: 37364457 DOI: 10.1016/j.jcis.2023.06.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Hollow nitrogen-doped porous carbon spheres (HNCS) with plentiful coordination N sites, high surface area, and superior electrical conductivity are ideal catalyst supports due to their easily access of reactants to active sites and excellent stability. To date, nevertheless, little has been reported on HNCS as supports to metal-single-atomic sites for CO2 reduction (CO2R). Here we report our findings in preparation of nickel-single-atom catalysts anchored on HNCS (Ni SAC@HNCS) for highly efficient CO2R. The obtained Ni SAC@HNCS catalyst exhibits excellent activity and selectivity for the electrocatalytic CO2-to-CO conversion, achieving a Faradaic efficiency (FE) of 95.2% and a partial current density of 20.2 mA cm-2. When applied to a flow cell, the Ni SAC@HNCS delivers above 95% FECO over a wide potential range and a peak FECO of 99%. Further, there is no obvious degradation in FECO and the current for CO production during continuous electrocatalysis of 9 h, suggesting good stability of Ni SAC@HNCS.
Collapse
Affiliation(s)
- Lei Zhong
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Wenhao Pan
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Zhikai Shi
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Chengwei Mao
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Jiayao Peng
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Jianlin Huang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|