1
|
Xu X, Chen Y, Liu P, Luo H, Li Z, Li D, Wang H, Song X, Wu J, Zhou X, Zhai T. General synthesis of ionic-electronic coupled two-dimensional materials. Nat Commun 2024; 15:4368. [PMID: 38778090 PMCID: PMC11111738 DOI: 10.1038/s41467-024-48690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Two-dimensional (2D) AMX2 compounds are a family of mixed ionic and electronic conductors (where A is a monovalent metal ion, M is a trivalent metal, and X is a chalcogen) that offer a fascinating platform to explore intrinsic coupled ionic-electronic properties. However, the synthesis of 2D AMX2 compounds remains challenging due to their multielement characteristics and various by-products. Here, we report a separated-precursor-supply chemical vapor deposition strategy to manipulate the chemical reactions and evaporation of precursors, facilitating the successful fabrication of 20 types of 2D AMX2 flakes. Notably, a 10.4 nm-thick AgCrS2 flake shows superionic behavior at room temperature, with an ionic conductivity of 192.8 mS/cm. Room temperature ferroelectricity and reconfigurable positive/negative photovoltaic currents have been observed in CuScS2 flakes. This study not only provides an effective approach for the synthesis of multielement 2D materials with unique properties, but also lays the foundation for the exploration of 2D AMX2 compounds in electronic, optoelectronic, and neuromorphic devices.
Collapse
Affiliation(s)
- Xiang Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yunxin Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Pengbin Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hao Luo
- Nanostructure Research Center, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haoyun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingyu Song
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jinsong Wu
- Nanostructure Research Center, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
- Optics Valley Laboratory, Hubei, 430074, P. R. China.
| |
Collapse
|
2
|
Tandon A, Sharma Y. In Situ Electrophoretic Decorated Cactus-Type Metallic-Phase MoS 2 on CaMn 2O 4 Nanofibers for Binder-Free Next-Generation LIBs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17728-17744. [PMID: 38553423 DOI: 10.1021/acsami.4c03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Ternary manganese-based oxides, such as CaMn2O4 (CMO) nanofibers fabricated via the electrospinning technique, have the potential to offer higher reversible capacity through conversion reactions in comparison to that of carbon-based anodes. However, its poor electrical conductivity hinders its usage in lithium-ion batteries (LIBs). Hence, to mitigate this issue, controlled single-step in situ decoration of highly conducting metallic-phase MoS2@CMO nanofibers has been achieved for the first time via the electrophoretic deposition (EPD) technique and utilized as a binder-free nanocomposite anode for LIBs. Further, the composition of MoS2@CMO nanofibers has also been optimized to attain better electronic and ionic conductivity. The morphological investigation revealed that the flakes of MoS2 nanoflowers are successfully and uniformly decorated over the CMO nanofibers' surface, forming a cactus-type morphology. As a binder-free nanocomposite LIB anode, CMOMS-7 (7 wt % MoS2@CMO) demonstrates a specific capacity of 674 mA h g-1 after 60 cycles at 50 mA g-1 and maintains a capacity of 454 mA h g-1 even after 300 cycles at 1000 mA g-1. Further, the good rate performance (102 mA h g-1 at 5000 mA g-1) of CMOMS-7 can be ascribed to the enhanced electrical conductivity provided by the metallic-phase MoS2. Moreover, the feasibility of CMOMS-7 is thoroughly investigated by using a full Li-ion cell incorporating a binder-free cathode of LiNi0.3Mn0.3Co0.3O2 (NMC). This configuration showcases an impressive energy density of 154 Wh kg-1. Thus, the hierarchical and aligned structure of CMO nanofibers combined with highly conductive MoS2 nanoflowers facilitates charge transportation within the composite electrodes. This synergistic effect significantly enhances the energy density of the conversion-based nanocomposites, making them highly promising anodes for advanced LIBs.
Collapse
Affiliation(s)
- Abhinav Tandon
- Centre for Nanotechnology, IIT Roorkee, Roorkee 247667, Uttarakhand, India
| | - Yogesh Sharma
- Department of Physics and Centre for Sustainable Energy, IIT Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
3
|
Chen Z, Li Y, Wang L, Wang Y, Chai J, Du J, Li Q, Rui Y, Jiang L, Tang B. A comprehensive review of various carbonaceous materials for anodes in lithium-ion batteries. Dalton Trans 2024; 53:4900-4921. [PMID: 38321942 DOI: 10.1039/d3dt04010k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
With the advent of lithium-ion batteries (LIBs), the selection and application of electrode materials have been the subject of much discussion and study. Among them, graphite has been widely investigated for use as electrode materials in LIBs due to its abundant resources, low cost, safety and electrochemical diversity. While it is commonly recognized that conventional graphite materials utilized for commercial purposes have a limited theoretical capacity, there has been a steady emergence of new and improved carbonaceous materials for use as anodes in light of the progressive development of LIBs. In this paper, the latest research progress of various carbon materials in LIBs is systematically and comprehensively reviewed. Firstly, the rocking chair charging and discharging mechanism of LIBs is briefly introduced in this paper, using graphite anodes as an example. After that, the general categories of carbonaceous materials are highlighted, and the recent research on the recent progress of various carbonaceous materials (graphite-based, amorphous carbon-based, and nanocarbon-based) used in LIB anodes is presented separately based on the classification of the structural morphology, emphasizing the influence of the morphology and structure of carbon-based materials on the electrochemical performance of the batteries. Finally, the current challenges of carbonaceous materials in LIB applications and the future development of other novel carbonaceous materials are envisioned.
Collapse
Affiliation(s)
- Zhiyuan Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Yifei Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Longzhen Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Yiting Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Jiali Chai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Jiakai Du
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Qingmeng Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Lei Jiang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Bohejin Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| |
Collapse
|
4
|
Ding X, Zhou Q, Li X, Xiong X. Fast-charging anodes for lithium ion batteries: progress and challenges. Chem Commun (Camb) 2024; 60:2472-2488. [PMID: 38314874 DOI: 10.1039/d4cc00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Slow charging speed has been a serious constraint to the promotion of electric vehicles (EVs), and therefore the development of advanced lithium-ion batteries (LIBs) with fast-charging capability has become an urgent task. Thanks to its low price and excellent overall electrochemical performance, graphite has dominated the anode market for the past 30 years. However, it is difficult to meet the development needs of fast-charging batteries using graphite anodes due to their fast capacity degradation and safety hazards under high-current charging processes. This feature article describes the failure mechanism of graphite anodes under fast charging, and then summarizes the basic principles, current research progress, advanced strategies and challenges of fast-charging anodes represented by graphite, lithium titanate (Li4Ti5O12) and niobium-based oxides. Moreover, we look forward to the development prospects of fast-charging anodes and provide some guidance for future research in the field of fast-charging batteries.
Collapse
Affiliation(s)
- Xiaobo Ding
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Qingfeng Zhou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Xiaodan Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Xunhui Xiong
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
5
|
Zhang L, Xie S, Li A, Li Y, Zheng F, Huang Y, Pan Q, Li Q, Wang H. Trimetallic sulfides coated with N-doped carbon nanorods as superior anode for lithium-ion batteries. J Colloid Interface Sci 2024; 655:643-652. [PMID: 37972451 DOI: 10.1016/j.jcis.2023.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Metal sulfides have been considered promising anode materials for lithium-ion batteries (LIBs), due to their high capacity. However, the poor cycle stability induced by the sluggish kinetics and poor structural stability hampers their practical application in LIBs. In this work, MoS2/MnS/SnS trimetallic sulfides heterostructure coated with N-doped carbon nanorods (MMSS@NC) is designed through a simple method involving co-precipitation, metal chelate-assisted reaction, and in-situ sulfurization method. In such designed MMSS@NC, a synergetic effect of heterojunctions and carbon layer is simultaneously constructed, which can significantly improve ionic and electronic diffusion kinetics, as well as maintain the structural stability of MMSS@NC during the repeated lithiation/delithiation process. When applied as anode materials for LIBs, the MMSS@NC composite shows superior long-term cycle performance (1145.0 mAh/g after 1100 cycles at 1.0 A/g), as well as excellent rate performance (565.3 mAh/g at 5.0 A/g). This work provides a unique strategy for the construction of multiple metal sulfide anodes for high-performance LIBs.
Collapse
Affiliation(s)
- Lixuan Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Sibing Xie
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Anqi Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Yu Li
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, China.
| | - Fenghua Zheng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Youguo Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Qichang Pan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China.
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
6
|
Hou J, Wang D, Chao M, Zhang L, Liu H, Zhao Y. A nitrogen-rich graphdiyne containing hexaazatrinaphthylene for high-performance lithium-ion batteries. Chem Commun (Camb) 2024. [PMID: 38259040 DOI: 10.1039/d3cc05722d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A nitrogen-rich graphdiyne (HATN-GDY) material containing electrochemical active hexaazatrinaphthylene units was successfully prepared. HATN-GDY exhibits a superior specific capacity of 2139 mA h g-1 and firm long-term stability due to the unique 2D π-conjugated structure and the large in-plane N-cavities.
Collapse
Affiliation(s)
- Jiaheng Hou
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Menghuan Chao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Lin Zhang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Hui Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|