1
|
Su P, Li S, Xiao FX. Precise Layer-by-Layer Assembly of Dual Quantum Dots Artificial Photosystems Enabling Solar Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400958. [PMID: 38644328 DOI: 10.1002/smll.202400958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Indexed: 04/23/2024]
Abstract
Quantum dots (QDs) colloidal nanocrystals are attracting enduring interest by scientific communities for solar energy conversion due to generic physicochemical merits including substantial light absorption coefficient, quantum confinement effect, enriched catalytically active sites, and tunable electronic structure. However, photo-induced charge carriers of QDs suffer from ultra-short charge lifespan and poor stability, rendering controllable vectorial charge modulation and customizing robust and stable QDs artificial photosystems challenging. Herein, tailor-made oppositely charged transition metal chalcogenides quantum dots (TMCs QDs) and MXene quantum dots (MQDs) are judiciously harnessed as the building blocks for electrostatic layer-by-layer assembly buildup on the metal oxides (MOs) framework. In these exquisitely designed LbL assembles MOs/(TMCs QDs/MQDs)n heterostructured photoanodes, TMCs QDs layer acts as light-harvesting antennas, and MQDs layer serves as electron-capturing mediator to relay cascade electrons from TMCs QDs to the MOs substrate, thereby yielding the spatially ordered tandem charge transport chain and contributing to the significantly boosted charge separation over TMCs QDs and solar water oxidation efficiency of MOs/(TMCs QDs/MQDs)n photoanodes. The relationship between interface configuration and charge transfer characteristics is unambiguously unlocked, by which photoelectrochemical mechanism is elucidated. This work would provide inspiring ideas for precisely mediating interfacial charge transfer pathways over QDs toward solar energy conversion.
Collapse
Affiliation(s)
- Peng Su
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, P. R. China
| | - Shen Li
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, P. R. China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
2
|
Du Y, Li C, Dai Y, Yin H, Zhu M. Recent progress in atomically precise metal nanoclusters for photocatalytic application. NANOSCALE HORIZONS 2024; 9:1262-1278. [PMID: 38956971 DOI: 10.1039/d4nh00197d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Photocatalysis is a widely recognized green and sustainable technology that can harness inexhaustible solar energy to carry out chemical reactions, offering the opportunity to mitigate environmental issues and the energy crisis. Photocatalysts with wide spectral response and rapid charge transfer capability are crucial for highly efficient photocatalytic activity. Atomically precise metal nanoclusters (NCs), an emerging atomic-level material, have attracted great interests owing to their ultrasmall size, unique atomic stacking, abundant surface active sites, and quantum confinement effect. In particular, the molecule-like discrete electronic energy level endows them with small-band-gap semiconductor behavior, which allows for photoexcitation in order to generate electrons and holes to participate in the photoredox reaction. In addition, metal NCs exhibit strong light-harvesting ability in the wide spectral UV-near IR region, and the diversity of optical absorption properties can be precisely regulated by the composition and structure. These merits make metal NCs ideal candidates for photocatalysis. In this review, the recent advances in atomically-precise metal NCs for photocatalytic application are summarized, including photocatalytic water splitting, CO2 reduction, organic transformation, photoelectrocatalytic reactions, N2 fixation and H2O2 production. In addition, the strategy for promoting photostability, charge transfer and separation efficiency of metal NCs is highlighted. Finally, a perspective on the challenges and opportunities for NCs-based photocatalysts is provided.
Collapse
Affiliation(s)
- Yuanxin Du
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, China.
| | - Chengqi Li
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, China.
| | - Yali Dai
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, China.
| | - Haijiao Yin
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, China.
| | - Manzhou Zhu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, China.
| |
Collapse
|
3
|
Chen W, Jin G, Liu Y, Wei Q, Tang J. Ternary Photoanodes with AgAu Nanoclusters and CoNi-LDH for Enhanced Photoelectrochemical Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38662414 DOI: 10.1021/acsami.4c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Atomically precise metal nanoclusters (NCs) present new opportunities for creating innovative solar-powered photoanodes due to their extraordinary physicochemical properties. Nevertheless, ultrasmall metal NCs tend to aggregate and lack active sites under light irradiation, which severely limits their widespread application. We have developed a strategy to design efficient ternary photoanodes by successively modifying AgAu NCs and CoNi-LDH on BiVO4 substrates using versatile impregnation and electrodeposition. The electronic properties of AgAu NCs facilitate the rapid transfer of photogenerated carriers on BiVO4 and CoNi-LDH. Additionally, ultrathin CoNi-LDH acts as a hole-collecting layer, which quickly extracts holes to the electrode/electrolyte interface. The synergistic effect and the matched energy levels between the ternary heterostructures promote the OER process, which significantly improved the photoelectrochemical (PEC) water oxidation performance. This study presents a new idea for further exploration of metal nanocluster-based PEC systems.
Collapse
Affiliation(s)
- Wenjie Chen
- Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Guangrui Jin
- Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Yijun Liu
- Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Qiaohua Wei
- Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Jing Tang
- Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
4
|
Shen H, Xu J, Fu Z, Wei X, Kang X, Shi W, Zhu M. Photoluminescence Quenching of Hydrophobic Ag 29 Nanoclusters Caused by Molecular Decoupling during Aqueous Phase Transfer and EmissionRecovery through Supramolecular Recoupling. Angew Chem Int Ed Engl 2024; 63:e202317995. [PMID: 38191987 DOI: 10.1002/anie.202317995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Exploiting emissive hydrophobic nanoclusters for hydrophilic applications remains a challenge because of photoluminescence (PL) quenching during phase transfer. In addition, the mechanism underlying PL quenching remains unclear. In this study, the PL-quenching mechanism was examined by analyzing the atomically precise structures and optical properties of a surface-engineered Ag29 nanocluster with an all-around-carboxyl-functionalized surface. Specifically, phase-transfer-triggered PL quenching was justified as molecular decoupling, which directed an unfixed cluster surface and weakened the radiative transition. Furthermore, emission recovery of the quenched nanoclusters was accomplished by using a supramolecular recoupling approach through the glutathione-addition-induced aggregation of cluster molecules, wherein the restriction of intracluster motion and intercluster rotation strengthened the radiative transition of the clusters. The results of this work offer a new perspective on structure-emission correlations for atomically precise nanoclusters and hopefully provide insight into the fabrication of highly emissive cluster-based nanomaterials for downstream hydrophilic applications.
Collapse
Affiliation(s)
- Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jiawei Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Ziwei Fu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
5
|
Yan X, Dong JH, Zheng JY, Wu Y, Xiao FX. Customizing precise, tunable, and universal cascade charge transfer chains towards versatile photoredox catalysis. Chem Sci 2024; 15:2898-2913. [PMID: 38404395 PMCID: PMC10882519 DOI: 10.1039/d3sc05761e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024] Open
Abstract
The core factors dictating the photocatalysis efficiency are predominantly centered on controllable modulation of anisotropic spatial charge transfer/separation and regulating vectorial charge transport pathways. Nonetheless, the sluggish charge transport kinetics and incapacity of precisely tuning interfacial charge flow at the nanoscale level are still the primary dilemma. Herein, we conceptually demonstrate the elaborate design of a cascade charge transport chain over transition metal chalcogenide-insulating polymer-cocatalyst (TIC) photosystems via a progressive self-assembly strategy. The intermediate ultrathin non-conjugated insulating polymer layer, i.e., poly(diallyl-dimethylammonium chloride) (PDDA), functions as the interfacial electron relay medium, and simultaneously, outermost co-catalysts serve as the terminal "electron reservoirs", synergistically contributing to the charge transport cascade pathway and substantially boosting the interfacial charge separation. We found that the insulating polymer mediated unidirectional charge transfer cascade is universal for a large variety of metal or non-metal reducing co-catalysts (Au, Ag, Pt, Ni, Co, Cu, NiSe2, CoSe2, and CuSe). More intriguingly, such peculiar charge flow characteristics endow the self-assembled TIC photosystems with versatile visible-light-driven photoredox catalysis towards photocatalytic hydrogen generation, anaerobic selective organic transformation, and CO2-to-fuel conversion. Our work would provide new inspiration for smartly mediating spatial vectorial charge transport towards emerging solar energy conversion.
Collapse
Affiliation(s)
- Xian Yan
- College of Materials Science and Engineering, Fuzhou University New Campus Fujian Province 350108 China
| | - Jun-Hao Dong
- College of Materials Science and Engineering, Fuzhou University New Campus Fujian Province 350108 China
| | - Jing-Ying Zheng
- College of Materials Science and Engineering, Fuzhou University New Campus Fujian Province 350108 China
| | - Yue Wu
- College of Materials Science and Engineering, Fuzhou University New Campus Fujian Province 350108 China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University New Campus Fujian Province 350108 China
| |
Collapse
|
6
|
Su P, Tang B, Xiao FX. Layer-By-Layer Assembly of Atomically Precise Alloy Nanoclusters Photosystems for Solar Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307619. [PMID: 37803332 DOI: 10.1002/smll.202307619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 10/08/2023]
Abstract
Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light-harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide-spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag-doped glutathione (GSH)-capped gold NCs, i.e., alloy Au1- x Agx @GSH NCs and non-conjugated insulating polymer of poly(diallyl-dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer-by-layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in-between Au1- x Agx @GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au1- x Agx @GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au1- x Agx @GSH NCs to the MO substrate, substantially improving the visible-light-driven photoelectrochemical water oxidation performances of MO/(PDDA-Au1- x Agx )n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs-based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion.
Collapse
Affiliation(s)
- Peng Su
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
| | - Bo Tang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
| |
Collapse
|
7
|
Chen Q, Xiao Y, Xiao FX. Crafting Insulating Polymer Mediated and Atomically Precise Metal Nanoclusters Photosensitized Photosystems Towards Solar Water Oxidization. Inorg Chem 2024; 63:1471-1479. [PMID: 38173240 DOI: 10.1021/acs.inorgchem.3c04083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Atomically precise metal nanoclusters (NCs) have been deemed as a new generation of metal nanomaterials because of their characteristic atomic stacking fashion, quantum confinement effect, and multitude of active sites. The discrete molecular-like energy band structure of metal NCs endows them with photosensitization capability for light harvesting and conversion. However, applications of metal NCs in photoelectrocatalysis are limited by the ultrafast charge recombination and unfavorable stability, impeding the construction of metal NC-based photosystems. In this work, we elaborately crafted multilayered metal oxide (MO)/(metal NCs/insulating polymer)n photoanodes by a facile layer-by-layer (LbL) assembly technique. In these well-defined heterostructured photoanodes, glutathione (GSH)-wrapped metal NCs (Agx@GSH, Ag9@GSH6, Ag16@GSH9, and Ag31@GSH19) and an insulating poly(allylamine hydrochloride) (PAH) layer are alternately deposited on the MO substrate in a highly ordered integration mode. We found that photoelectrons of metal NCs can be tunneled into the MO substrate via the intermediate ultrathin insulating polymer layer by stimulating the tandem charge transfer route, thus facilitating charge separation and boosting photoelectrochemical water oxidation performances. Our work would open a new frontier for judiciously regulating directional charge transport over atomically precise metal NCs for solar-to-hydrogen conversion.
Collapse
Affiliation(s)
- Qing Chen
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China
| | - Yang Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian 350108, China
| |
Collapse
|
8
|
Zhu X, Xu H, Bi C, Song H, Zhou G, Zhong K, Yang J, Yi J, Xu H, Wang X. Piezo-photocatalysis for efficient charge separation to promote CO 2 photoreduction in nanoclusters. ULTRASONICS SONOCHEMISTRY 2023; 101:106653. [PMID: 37918293 PMCID: PMC10638044 DOI: 10.1016/j.ultsonch.2023.106653] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
The substantial emissions of CO2 greenhouse gases have resulted in severe environmental problems, and research on the implementation of semiconductor materials to minimize CO2 is currently a highly discussed subject. Effective separation of interface charges is a major challenge for efficient piezo-photocatalytic systems. Meanwhile, the ultrasmall-sized metal nanoclusters can shorten the distance of electron transport. Herein, we synthesized Au25(p-MBA)18 nanoclusters (Au25 NCs) modified red graphitic carbon nitride (RCN) nanocatalysts with highly exposed Au active sites by in-situ seed growth method. The loading of Au25 NCs on the RCN surface provides more active sites and creates a long-range ordered electric field. It allows for the direct utilization of the piezoelectric field to separate photogenerated carriers during photo-piezoelectric excitation. Based on the above advantages, the rate of CO2 reduction to CO over Au25 NCs/RCN (111.95 μmol g-1 h-1) was more than triple compared to that of pristine RCN. This paper has positive implication for further application of metal clusters loaded semiconductor for piezo-photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Xingwang Zhu
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China.
| | - Hangmin Xu
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China
| | - Chuanzhou Bi
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China
| | - Hao Song
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China
| | - Ganghua Zhou
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China
| | - Kang Zhong
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinman Yang
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianjian Yi
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China
| | - Hui Xu
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xiaozhi Wang
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
9
|
Chen Q, Ge XZ, Yu L, Xiao FX. Atomically Precise Metal Nanocluster Photosystem: Electron Relay Boosts Photocatalytic Organic Transformation. Inorg Chem 2023; 62:19358-19365. [PMID: 37965749 DOI: 10.1021/acs.inorgchem.3c03283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Atomically precise metal nanoclusters (NCs) demonstrate emerging potential as a new generation of photosensitizers in photoredox catalysis. However, metal NCs suffer from intrinsic poor instability, which leads to the loss of photosensitization effect and hampers their widespread applications in heterogeneous photocatalysis. Herein, we corroborate the design of a spatially directional charge transfer pathway over transition metal chalcogenide (TMC)-based heterostructures by way of a facile and efficient electrostatic self-assembly approach. Positively charged solid-state nonconjugated insulating polymer of poly(allylamine hydrochloride) (PAH) and negatively charged glutathione (GSH) capped metal NCs [Ag9@(GSH)6] as building blocks were controllably and highly ordered anchored on the TMC substrate. It was unveiled that owing to the appropriate energy level alignment and interface configuration, photogenerated electrons over metal NCs can directionally flow to the TMC substrate with the aid of PAH, which functions as an interfacial charge transfer mediator, and simultaneously holes migrate in the opposite direction, thereby collaboratively contributing to substantially boosted charge separation and prolonged charge lifetime. Benefiting from these merits, the thus self-assembled TMCs/PAH/metal NC heterostructure unfolds conspicuously enhanced photoactivity toward anaerobic selective photocatalytic reduction of nitroaromatics to amino derivatives under visible light irradiation. This work would significantly reinforce our fundamental understanding of the charge transfer characteristic of atomically precise metal NCs and the charge-withdrawing capability of solid insulating polymers for solar energy conversion.
Collapse
Affiliation(s)
- Qing Chen
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province350108, China
| | - Xing-Zu Ge
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province350108, China
| | - Linhui Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | | |
Collapse
|
10
|
Zhu JR, Chen YH, Li ZY, Chen Q, Xiao FX. Maneuvering the Directional Charge Flow for Photoredox Organic Conversion. Inorg Chem 2023; 62:18649-18659. [PMID: 37903426 DOI: 10.1021/acs.inorgchem.3c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Transition-metal chalcogenide quantum dots (TMC QDs) show great promise in artificial photosynthesis for excellent light-harvesting capability. Nonetheless, TMC QDs have limitations of ultrafast charge recombination rate, sluggish carrier migration kinetics, and generic photocorrosion, retarding their widespread applications. To solve these obstacles, herein, we demonstrate the stimulation of charge migration over TMC QDs with the aid of nonconjugated insulating polymer and graphene (GR) for a versatile photoredox selective organic transformation. To this end, an ultrathin insulating polymer layer, i.e., poly(allylamine hydrochloride) (PAH), grafted on the GR framework, is electrostatically intercalated at the interface of TMCs QDs and the GR framework via a self-assembly for constructing TMC QDs/PAH/GR three-dimensional spatially multilayered heterostructures. In this well-defined nanoarchitecture, TMC QDs function as a light-harvesting antenna, GR as a terminal electron reservoir, and PAH as an intermediate interfacial charge relay mediator. We ascertain that the ultrathin PAH interim layer unexpectedly fosters the photoelectron migration from TMCs QDs to the GR framework in a tunable fashion, boosting the charge separation of TMCs QDs and resulting in significantly improved photoactivities toward anaerobic reduction of aromatic nitro compounds to amino derivatives and oxidation of alcohols to aldehydes under visible light. Photoredox catalysis mechanisms of such TMC QDs/PAH/GR photosystems are elucidated, and the active species in these photoredox organic conversion reactions are comprehensively determined. Our work would open new frontiers to finely modulate the charge transport of TMCs QDs via nonconjugated insulating polymers for solar energy conversion.
Collapse
Affiliation(s)
- Jun-Rong Zhu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| | - Yi-Han Chen
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| | - Zhuang-Yan Li
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| | - Qing Chen
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| |
Collapse
|
11
|
Yan X, Wang K, Xiao FX. Electron Tunneling Fosters Solar-to-Hydrogen Energy Conversion. Inorg Chem 2023; 62:17454-17463. [PMID: 37827854 DOI: 10.1021/acs.inorgchem.3c02857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Transition-metal chalcogenide quantum dots (TMCs QDs) exhibit emerging potential in the field of solar energy conversion due to large absorption coefficients for light harvesting, quantum size effect, and abundant active sites. However, fine-tuning the photoinduced charge carrier over TMCs QDs to manipulate the directional charge-transfer pathway remains challenging, considering their ultrashort charge lifetime and slow charge-transfer kinetics. To this end, herein, MoSx/PDDA/TMCs QDs heterostructures were exquisitely designed by a simple and green electrostatic self-assembly strategy under ambient conditions, wherein tailor-made negatively charged TMCs QDs stabilized by mercaptoacetic acid (MAA) were precisely self-assembled on the positively charged polydiallyl dimethylammonium chloride (PDDA)-modified MoSx nanoflowers (NFs), forming a well-defined three-dimensional heterostructured nanoarchitecture. As an electron trapping agent, an MoSx NFs cocatalyst benefits the unidirectional electron transfer from TMCs QDs to the ideal active centers on the MoSx NFs surface by tunneling the ultrathin insulating polymer interim layer, thereby boosting the charge separation efficiency and endowing self-assembled MoSx/PDDA/TMCs QDs heterostructures with considerably increased photocatalytic hydrogen evolution activity (1.96 mmol·g-1·h-1) and admirable stability under visible light irradiation. Our work will provide new insights into smart regulation of directional charge transfer over TMCs QDs-based photosystems for solar energy conversion.
Collapse
Affiliation(s)
- Xian Yan
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou 350108, Fujian, China
| | - Kun Wang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou 350108, Fujian, China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou 350108, Fujian, China
| |
Collapse
|
12
|
Li ZY, Chen YH, Zhu JR, Chen Q, Lu SJ, Xiao FX. Self-Transformation of Atomically Precise Alloy Nanoclusters to Plasmonic Alloy Nanocrystals: Evaluating Photosensitization in Solar Water Oxidation. Inorg Chem 2023; 62:16965-16973. [PMID: 37794771 DOI: 10.1021/acs.inorgchem.3c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Atomically precise alloy nanoclusters (NCs) inherit the advantages of homometal NC counterparts such as atomic stacking fashion, quantum confinement effect, and enriched catalytic active sites and simultaneously possess the advantageous physicochemical properties such as significantly enhanced photostability, ideal photosensitization efficiency, and favorable energy band structure. Nevertheless, elucidation of the roles of alloy NCs and alloy nanocrystals (NYs) in boosting solar water oxidation has so far not yet been reported owing to the deficiency of applicable alloy NC photosystems. Herein, utilizing the generic thermal-induced self-transformation of alloy NCs to alloy NYs, we comprehensively explore the photosensitization properties of glutathione (GSH)-capped alloy NCs (AgxAu1-x@GSH and CuxAu1-x@GSH) and the corresponding alloy NY (AgAu and CuAu) counterparts in solar water oxidation reaction. The results imply that photoelectrons of alloy NCs surpass the hot electrons over plasmonic alloy NYs in stimulating the PEC water oxidation reaction. The photoelectrons of alloy NCs demonstrate lower interfacial charge-transfer resistance, longer carrier lifetime, and a more enhanced photosensitization effect with respect to the plasmonic alloy NYs, contributing to the significantly boosted photoelectrochemical water oxidation activities. Moreover, we found that our result is universal.
Collapse
Affiliation(s)
- Zhuang-Yan Li
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| | - Yi-Han Chen
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| | - Jun-Rong Zhu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| | - Qing Chen
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| | - Shao-Jun Lu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| |
Collapse
|