1
|
Diao H, Wang M, Dong S, Song Y, Sun W, Li M, Yang J, Yuan D. Biomimetic Nanostructure Engineering of Ultralow Ir-Loading Electrocatalysts for Oxygen Reduction Reaction. Inorg Chem 2025; 64:1624-1629. [PMID: 39848693 DOI: 10.1021/acs.inorgchem.4c04859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Promoting the rate of the oxygen reduction reaction (ORR) is critical for boosting the overall energy efficiency of the flexible zinc-air batteries (FZABs). Inspired by nature, we designed "branch-leaf" like hierarchical porous carbon nanofibers with ultralow loadings of Ir nanoparticles (NPs) derived from covalent-organic framework/metal-organic framework (COF/MOF) core-shell hybrids. The as-obtained Ir/FeZn-hierarchical porous carbon nanofibers (HPCNFs) showcase enhanced ORR performance, and the ultralow Ir loading reduces the cost while maintaining catalytic capacity. Interestingly, the FZABs assembled with Ir/FeZn-HPCNFs deliver an impressive stable performance. This work provides a feasible approach for designing cost-effective and highly efficient electrocatalysts using in FZABs.
Collapse
Affiliation(s)
- Han Diao
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Minghui Wang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Senjie Dong
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Yuqian Song
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Wenjing Sun
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Meiyue Li
- College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Hydrogen Energy Key Materials and Technologies of Shandong Province, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Jiarui Yang
- College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Hydrogen Energy Key Materials and Technologies of Shandong Province, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Ding Yuan
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China
| |
Collapse
|
2
|
Zhou S, Chen C, Xia J, Li L, Qian X, Yin FX, He G, Chen Q, Chen H. FeN 4S 1 Single-Atom Sites Anchored on Three-Dimensional Porous Carbon for Highly Efficient and Durable Oxygen Electrocatalysis. ACS NANO 2024; 18:32995-33004. [PMID: 39528350 DOI: 10.1021/acsnano.4c15410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Precisely designing asymmetric active centers and exploring their electronic regulation effects to prepare efficient bifunctional single-atom catalysts (SACs) is important for boosting the practical applications of zinc-air batteries (ZABs). Herein, an effective strategy has been developed by introducing an axial S atom to the FeN4 active center, simultaneously assisted by pyrolyzing the graphene oxide (GO) sheathed zeolitic-imidazolate framework-8 (ZIF8) composite and constructing a three-dimensional (3D) porous framework with abundant FeN4S1 moieties. This structure can accelerate the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics owing to the modulated electronic redistribution and d-band center with a reduced energy barrier. The optimal S-Fe-NC/rGO showcases a lower voltage gap (ΔE) of 0.64 V between both the ORR and OER half-wave potentials at 10 mA cm-2, highlighting the excellent bifunctional activities. The assembled S-Fe-NC/rGO rechargeable liquid ZABs deliver a power density of 154.05 mW·cm-2 and a desirable durability of >900 h. More importantly, the corresponding flexible solid-state ZABs exhibit considerable foldability.
Collapse
Affiliation(s)
- Shilong Zhou
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Chao Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Jiawei Xia
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Feng-Xiang Yin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Qun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Hu Z, Geng Q, Dong S, Wang M, Song Y, Sun W, Diao H, Yuan D. MOF-derived low Ru-loaded high entropy alloy as an efficient and durable self-supporting electrode in rechargeable liquid/flexible Zn-air batteries. J Colloid Interface Sci 2024; 671:34-45. [PMID: 38788422 DOI: 10.1016/j.jcis.2024.05.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Exploiting the high-entropy alloy (HEA) electrocatalysts with the synergistic effect of multi-metal components is an effective approach to address the slow kinetics and undesirable stability of the oxygen evolution reaction (OER) in Zn-air batteries (ZABs), but still faces many challenges. In this study, a multimetallic Metal-organic framework (MOF)-derived HEA catalyst was successfully fabricated on carbon fiber as a flexible self-supporting electrode (denoted as CC@FeCoNiMoRu-HEA/C) for high-performance liquid/flexible ZABs using a facile and cost-effective strategy. The three-dimensional (3D) highly open network framework and hierarchical porous structure accelerate the mass transport of OH-/O2 and charge transfer. The electronic structure adjustment, lattice defects and high entropy effects enable the CC@FeCoNiMoRu-HEA/C catalysts to perform high OER catalytic activity and strong durability while reducing the Ru content and lowering the economic cost. In situ Raman spectra and XPS results reveal the generation of metal-OOH intermediates on the HEA surface during the OER process. In a practical demonstration, the liquid ZAB assembled with CC@FeCoNiMoRu-HEA/C + Pt/C as the air electrode offers stable open-circuit voltage, large power density, excellent specific capacity and satisfactory cycle life, outperforming the commercial RuO2 + Pt/C-based reference ZAB. More attractively, the flexible solid-state ZAB also achieves fast dynamic response, high peak power density, robust cycling stability as well as favorable mechanical flexibility, indicating a promising application prospect in future flexible electronics and wearable devices. This work provides a viable pathway to develop low precious metal-loaded HEAs as advanced OER self-supporting electrocatalysts and realize high-performance flexible energy storage devices.
Collapse
Affiliation(s)
- Zunpeng Hu
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Qian Geng
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Senjie Dong
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Minghui Wang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Yuqian Song
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Wenjing Sun
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Han Diao
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Ding Yuan
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China.
| |
Collapse
|
4
|
Cheng J, Zhang Z, Shao J, Wang T, Li R, Zhang W. Construction of an Axial Charge Transfer Channel Between Single-Atom Fe Sites and Nitrogen-Doped Carbon Supports for Boosting Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402583. [PMID: 38804883 DOI: 10.1002/smll.202402583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The introduction of axial-coordinated heteroatoms in Fe─N─C single-atom catalysts enables the significant enhancement of their oxygen reduction reaction (ORR) performance. However, the interaction relationship between the axial-coordinated heteroatoms and their carbon supports is still unclear. In this work, a gas phase surface treatment method is proposed to prepare a series of X─Fe─N─C (X = O, P, and S) single-atom catalysts with axial X-coordination on graphitic-N-rich carbon supports. Synchrotron-based X-ray absorption near-edge structure spectra and X-ray photoelectron spectroscopy indicate the formation of an axial charge transfer channel between the graphitic-N-rich carbon supports and single-atom Fe sites by axial O atoms in O─Fe─N─C. As a result, the O─Fe─N─C exhibits excellent ORR performance with a half-wave potential of 0.905 V versus RHE and a high specific capacity of 884 mAh g-1 for zinc-air battery, which is superior to other X─Fe─N─C catalysts without axial charge transfer and the commercial Pt/C catalyst. This work not only demonstrates a general synthesis strategy for the preparation of single-atom catalysts with axial-coordinated heteroatoms, but also presents insights into the interaction between single-atom active sites and doped carbon supports.
Collapse
Affiliation(s)
- Jiahao Cheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zheng Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jibin Shao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tang Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Rui Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
5
|
Fu K, Ma B, Liu J, Zhou M, Xing Y, Wei X, Meng F, Liu J. In situ green architecture of the 3D FeZn-N-C based electrocatalyst for efficient oxygen reduction. Chem Commun (Camb) 2024; 60:10366-10369. [PMID: 39219488 DOI: 10.1039/d4cc02697g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We prepared a 3D FeZn-N-C based catalyst by green in situ growth of 1D Fe-N-C carbon nanotubes by introducing ferrocyanide ions on the surface of 2D exfoliated MOF-5. The 1D/2D FeZn-N-C based electrocatalyst is conducive to O2 diffusion and ionic/electron transfer, exhibiting an excellent ORR catalytic performance and a peak power density of 294 mW cm-2 for Zn-air batteries.
Collapse
Affiliation(s)
- Kui Fu
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Biao Ma
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jianling Liu
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Meng Zhou
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yihai Xing
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiangfeng Wei
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Fancheng Meng
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jiehua Liu
- Future Energy Laboratory, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China.
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Engineering Research Center of High-Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei 230009, China
| |
Collapse
|
6
|
Ullah S, Hussain A, Farid MA, Irfan S, Amin R, Fouda AM, Nazir A, Hou D, Zou JJ, Du S, Tahir M. Molybdenum tungsten hydrogen oxide doped with phosphorus for enhanced oxygen/hydrogen evolution reactions. RSC Adv 2024; 14:27928-27934. [PMID: 39224634 PMCID: PMC11367707 DOI: 10.1039/d4ra05023a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The development of efficient electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) is pivotal for advancing cleaner and sustainable fuel production technologies. The conventional electrocatalysts have limited stability and higher overpotentials, and there is demand to explore advanced materials and synthesis methods. In this context, a novel bifunctional electrocatalyst has been devised through the phosphidation of tungsten molybdenum oxide (P-Mo0.69W0.31H0.98O3) at relatively low temperatures. This innovative approach aims to enhance the efficiency of HER and OER while minimizing the overpotential values and maintaining higher stability. Specifically, the individual performance of Mo0.69W0.31H0.98O3 has been significantly boosted by doping it with phosphorus at a low temperature of 300 °C. This doping process results in a unique morphology for the catalyst, leading to a notable improvement in OER/HER performances. P-Mo0.69W0.31H0.98O3 exhibits a potential of 320 mV at 10 mA cm-2 in a KOH electrolyte, demonstrating both high activity and long-term stability. Additionally, P-Mo0.69W0.31H0.98O3 exhibits commendable HER performance, requiring only 380 mV at 100 mA cm-2. This combination of efficient OER and HER performance positions P-Mo0.69W0.31H0.98O3 as representing a significant advancement in the field of electrocatalysis, additionally addressing the fundamental gap by providing stable and hybrid catalyst for various electrochemical devices. Given its cost-effectiveness and exceptional activity, P-Mo0.69W0.31H0.98O3 holds significant potential for advancing the field of electrocatalysis and contributing to the development of cleaner and sustainable fuel production methods.
Collapse
Affiliation(s)
- Sana Ullah
- School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Asif Hussain
- Department of Physics, University of Lahore 53700 Lahore Pakistan
| | - Muhammad Asim Farid
- Department of Chemistry, University of Education Lahore 53700 Lahore Pakistan
| | - Shaheen Irfan
- Department of Physics, University of Lahore 53700 Lahore Pakistan
| | - Roohul Amin
- School of Sciences, Tianjin University China
| | - Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Atif Nazir
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Dehua Hou
- School of Chemical Engineering, Birmingham University Birmingham UK
| | - Ji-Jun Zou
- School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Shangfeng Du
- School of Chemical Engineering, Birmingham University Birmingham UK
| | - Muhammad Tahir
- School of Chemical Engineering, Birmingham University Birmingham UK
- Department of Physics, University of Education Lahore Punjab 54770 Pakistan
| |
Collapse
|
7
|
Cao G, Li X, Chen L, Duan R, Li J, Jiang Q, Wang J, Li M, Li M, Wang J, Xi Y, Li W, Peng J. Tuning Redox Behavior of Sulfur Cathodes Via Ternary-Coordinated Single Fe Atom in Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311174. [PMID: 38174619 DOI: 10.1002/smll.202311174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Modulating the coordination configuration of single Fe atom has been an efficient strategy to strengthen the redox dynamics for lithium-sulfur batteries (LSBs) but remains challenging. Herein, the single Fe atom is functioned with nitrogen and carbon atoms in the first shell, and simultaneously, oxidized sulfur (─SOx) in the second shell, which presents a lower antibonding state and well address the redox activity of sulfur cathodes. In the ternary-coordinated single Fe atom catalyst (FeN2C2-SOx-NC), the binary structure of FeN2C2 provides a lower Fe-S bonding strength and d-p orbital hybridization, which obviously optimizes the adsorption and desorption behavior of sulfur species during the reduction and oxidation reaction processes. Simultaneously, the ─SOx redistributes the electron density of the coordinating nitrogen atoms, which possesses high electron-withdrawing ability and develops electrocatalytic activity. As a result, the sulfur cathodes with FeN2C2-SOx-NC present an excellent high-rate cyclic performance, accompanied by a capacity decay rate of 0.08% per cycle for 500 cycles at 4.0 C. This study provides new insights for optimizing the redox dynamics of sulfur cathodes in LSBs at the atomic level.
Collapse
Affiliation(s)
- Guiqiang Cao
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Xifei Li
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Liping Chen
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Ruixian Duan
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Jun Li
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Qinting Jiang
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Jingjing Wang
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Mengyang Li
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Ming Li
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Jing Wang
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Yukun Xi
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Wenbin Li
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Jianhong Peng
- School of Physical and Electronic Information Engineering, Qinghai Nationalities University, Xining, 810007, P. R. China
| |
Collapse
|
8
|
Zhou S, Chen C, Xia J, Li L, Qian X, Yin F, He G, Chen Q, Chen H. FeN 3S 1─OH Single-Atom Sites Anchored on Hollow Porous Carbon for Highly Efficient pH-Universal Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310224. [PMID: 38321843 DOI: 10.1002/smll.202310224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/27/2023] [Indexed: 02/08/2024]
Abstract
Regulating the asymmetric active center of a single-atom catalyst to optimize the binding energy is critical but challenging to improve the overall efficiency of the electrocatalysts. Herein, an effective strategy is developed by introducing an axial hydroxyl (OH) group to the Fe─N4 center, simultaneously assisting with the further construction of asymmetric configurations by replacing one N atom with one S atom, forming FeN3S1─OH configuration. This novel structure can optimize the electronic structure and d-band center shift to reduce the reaction energy barrier, thereby promoting oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activities. The optimal catalyst, FeSA-S/N-C (FeN3S1─OH anchored on hollow porous carbon) displays remarkable ORR performance with a half-wave potential of 0.92, 0.78, and 0.64 V versus RHE in 0.1 m KOH, 0.5 m H2SO4, and 0.1 m PBS, respectively. The rechargeable liquid Zn-air batteries (LZABs) equipped with FeSA-S/N-C display a higher power density of 128.35 mW cm-2, long-term operational stability of over 500 h, and outstanding reversibility. More importantly, the corresponding flexible solid-state ZABs (FSZABs@FeSA-S/N-C) display negligible voltage changes at different bending angles during the charging and discharging processes. This work provides a new perspective for the design and optimization of asymmetric configuration for single-atom catalysts applied to the area of energy conversion and storage.
Collapse
Affiliation(s)
- Shilong Zhou
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Chao Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Jiawei Xia
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Fengxiang Yin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Qun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
9
|
He Y, Yang J, Wang Y, Jia Y, Li H, Liu Y, Liu L, Tan Q. Atomically Dispersed Dual-Metal ORR Catalyst with Hierarchical Porous Structure for Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38412364 DOI: 10.1021/acsami.3c16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The metal-nitrogen-carbon (M-N-C)-based catalysts are promising to replace PGM (platinum group metal) to accelerate oxygen reduction reaction due to their excellent electrocatalytic performance. However, the inferior intrinsic activity and poor active site density confining further improvement in their performance. Modulating the electronic structure and reasonably designing the pore structure are widely acknowledged effective strategies to boost the activity of the M-N-C catalysts. However, it is a great challenge to form abundant pores to regulate the electronic structure via the facile method. Herein, a hierarchical, porous dual-atom catalyst FeNi-NPC-1000 has been architectured by the Na2CO3 template method and bimetallic doping modification strategy. Benefitting from the optimized pore and electronic structure, the as-prepared FeNi-NPC-1000 possesses a high specific surface area (1412.8 m2 g-1) and improved ORR activity (E1/2 = 0.877 V vs RHE), which is superior to that of Pt/C (E1/2 = 0.867 V vs RHE). With the evidence of AC-STEM, XAS, and DFT, the FeNi-N8-C moiety is proven to be the key active site to realize high-efficiency ORR catalysis. When assembled it as an air cathode of ZABs, FeNi-NPC-1000 displays superior discharge performance (Pmax = 367.1 mW cm-2) and a stable battery long-life. This article will provide a new strategy for designing dual-metal atomic catalysts applied in metal-air batteries.
Collapse
Affiliation(s)
- Yuting He
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Junbo Yang
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yi Wang
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yufei Jia
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Hongtao Li
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yongning Liu
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Liting Liu
- Analytical and Testing Center, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Tan
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
10
|
Dong X, Shi W, Wang G, Chen J, Wang R, Zhang J. Dual-Ligand Strategy to Construct Metal Organic Gel Catalyst with the Optimized Electronic Structure for High-Efficiency Overall Water Splitting and Flexible Metal-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307407. [PMID: 37968835 DOI: 10.1002/smll.202307407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Indexed: 11/17/2023]
Abstract
Non-noble metal catalysts are known for their efficient catalytic performance for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Metal organic gels (MOGs) can be considered as a promising electrocatalyst owing to the diverse physicochemical properties but usually suffer from its poor electrical conductivity and catalytic stability. Here, a FeCo-MOG is constructed with considerable trifunctional activity. The optimal P-CoFe-H3 prepared by using phytic acid (PA) and 2,4,6-Tris[(p-carboxyphenyl)amino]-1,3,5-triazine benzoic acid (H3 TATAB) as dual ligands), exhibits outstanding ORR, OER, and HER activities as well as stability, exceeding most of state-of-the-art catalysts. As expected, the flexible Zn-air battery applied with P-CoFe-H3 as air cathode displays considerable power density, discharge voltage plateau, and cycling stability. Impressively, it is also capable of driving the overall water-splitting device by applying the P-CoFe-H3 as anode and cathode. Furthermore, theoretical calculations reveal that dual ligands can optimize the coordination environment and charge density of active sites, thereby reducing the absorption energy of intermediate species and boosting the catalytic performance. This work endows the dual-ligands coordination strategy with great potentiality for MOGs-based electrocatalysts in energy conversion devices.
Collapse
Affiliation(s)
- Xinran Dong
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Weiyi Shi
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|