1
|
Kassab AE, Gomaa RM, Gedawy EM. Drug repurposing of fluoroquinolones as anticancer agents in 2023. RSC Adv 2024; 14:37114-37130. [PMID: 39569131 PMCID: PMC11578043 DOI: 10.1039/d4ra03571b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Drug developers are currently focusing on investigating alternative strategies, such as "drug repositioning", to address issues associated with productivity, regulatory obstacles, and the steadily rising cost of pharmaceuticals. Repositioning is the best strategy to stop searching for new drugs because it takes less time and money to investigate new indications for already approved or unsuccessful drugs. Although there are several potent Topo II inhibitors available on the market as important drugs used in the therapy of many types of cancer, more may be required in the future. The current inhibitors have drawbacks including acquired resistance and unfavorable side effects such as cardiotoxicity and subsequent malignancy. A substantial body of research documented the cytotoxic potential of experimental fluoroquinolones (FQs) on tumor cell lines and their remarkable efficacy against eukaryotic Topo II in addition to optimized physical and metabolic characteristics. The FQ scaffold has a unique ability to potentially resolve every major issue associated with traditional Topo II inhibitors while maintaining a highly desirable profile in crucial drug-likeness parameters; therefore, there is a significant chance that FQs will be repositioned as anticancer candidates. This review offers a summary of the most recent research on the anticancer potential of FQs that was published in 2023. Along with discussing structural activity relationship studies and the mechanism underlying their antiproliferative activity, this review aims to provide up-to-date information that will spur the development of more potent FQs as viable cancer treatment candidates.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Kasr El-Aini Street, P. O. Box 11562 Cairo Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University P. O. Box 35516 Mansoura Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC) Badr City, P. O. Box 11829 Cairo Egypt +2023635140 +2023639307
| | - Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Kasr El-Aini Street, P. O. Box 11562 Cairo Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC) Badr City, P. O. Box 11829 Cairo Egypt +2023635140 +2023639307
| |
Collapse
|
2
|
Mo X, Rao DP, Kaur K, Hassan R, Abdel-Samea AS, Farhan SM, Bräse S, Hashem H. Indole Derivatives: A Versatile Scaffold in Modern Drug Discovery-An Updated Review on Their Multifaceted Therapeutic Applications (2020-2024). Molecules 2024; 29:4770. [PMID: 39407697 PMCID: PMC11477627 DOI: 10.3390/molecules29194770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Indole derivatives have become an important class of compounds in medicinal chemistry, recognized for their wide-ranging biological activities and therapeutic potential. This review provides a comprehensive overview of recent advances in the evaluation of indole-based compounds in the last five years, highlighting their roles in cancer treatment, infectious disease management, anti-inflammatory therapies, metabolic disorder interventions, and neurodegenerative disease management. Indole derivatives have shown significant efficacy in targeting diverse biological pathways, making them valuable scaffolds in designing new drugs. Notably, these compounds have demonstrated the ability to combat drug-resistant cancer cells and pathogens, a significant breakthrough in the field, and offer promising therapeutic options for chronic diseases such as diabetes and hypertension. By summarizing recent key findings and exploring the underlying biological mechanisms, this review underscores the potential of indole derivatives in addressing major healthcare challenges, thereby instilling hope and optimism in the field of modern medicine.
Collapse
Affiliation(s)
- Xingyou Mo
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Devendra Pratap Rao
- Coordination Chemistry Laboratory, Department of Chemistry, Dayanand Anglo-Vedic (PG) College, Kanpur 208001, Uttar Pradesh, India
| | - Kirandeep Kaur
- Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India
| | - Roket Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Ahmed S. Abdel-Samea
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Sara Mahmoud Farhan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Hamada Hashem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
3
|
Cui M, Liu Y, Liu Y, Li T, Chen X, Da L. Oral nano-formulations for endocrine therapy of endometrioid adenocarcinomas. Biomed Pharmacother 2024; 179:117328. [PMID: 39243435 DOI: 10.1016/j.biopha.2024.117328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
Endometrial cancer is one of the three major malignant tumors of the reproductive system that threaten women's lives and health. The incidence of this disease is on the rise globally. Most cases of endometrial cancer comprise endometrioid adenocarcinomas, whose treatment is challenged by factors such as their high recurrence rate and the need to preserve fertility among young patients. Thus, oral endocrine therapy has become the main treatment modality. The main drugs used in oral endocrine therapy are progestins, selective estrogen receptor antagonists, and aromatase inhibitors. However, their clinical use is hindered by their low solubility and low oral utilization. The rapid development of nanotechnology allows the combination of these drugs with oral nano-formulations to create a good carrier. Such nanocarriers, including nanospheres, nanocapsules, and micelles can protect the drug against clearance and increase the site specificity of drug delivery. This paper reviews the pathogenesis of endometrioid endometrial cancer (EEC) and oral nano-formulations for endocrine therapy.
Collapse
Affiliation(s)
- Minghua Cui
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Gynecology Department, Affliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yuehui Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Laboratory Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yangyang Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Laboratory Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Tao Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Xin Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Gynecology Department, Affliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Liu Da
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
4
|
Minko T, Taratula O. Nanomedicine for Women's Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405178. [PMID: 39032120 DOI: 10.1002/smll.202405178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 07/22/2024]
Affiliation(s)
- Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
5
|
Kang J, Tong Y. Investigating the attenuating effects of metformin-loaded selenium nanoparticles coupled with Myrtus communis L. flower extract on CaOx deposition in male Sprague Dawley rat kidneys via regulating MAPK signaling pathway. Regen Ther 2024; 26:14-26. [PMID: 39691916 PMCID: PMC11652069 DOI: 10.1016/j.reth.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 12/19/2024] Open
Abstract
Kidney stones are a foremost clinical concern in urology with CaOx crystals accounting for roughly 80% of these renal formations. This research endeavor seeks to ascertain the protective effects of Metformin-encapsulated selenium nanoparticles (M@Se NPs), combined with a 55% hydroethanolic flower extract from Myrtus communis L. (MCL) in countering the formation of kidney stones in Male Sprague Dawley rats. The particle's diameter was measured to be 39 nm and 13.8 nm from DLS and HR-TEM analysis. Rat groups administered with the MCL-M@Se NPs (1:1.5:1) exhibited reduced renal stone formation in urine and serum analysis compared to the negative control group. Histological evaluations of kidney samples using H&E, and MTS staining indicated a subdued presence of ECM deposition in contrast to other rat groups. Conclusively, the protective mechanism of MCL-M@Se NPs against CaOx stone damage can be confidently attributed to the obstruction of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jian Kang
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yanqing Tong
- Department of Nephrology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| |
Collapse
|
6
|
Yang Y, Liu L, Tian Y, Gu M, Wang Y, Ashrafizadeh M, Reza Aref A, Cañadas I, Klionsky DJ, Goel A, Reiter RJ, Wang Y, Tambuwala M, Zou J. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Lett 2024; 587:216659. [PMID: 38367897 DOI: 10.1016/j.canlet.2024.216659] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
Despite the challenges posed by drug resistance and side effects, chemotherapy remains a pivotal strategy in cancer treatment. A key issue in this context is macroautophagy (commonly known as autophagy), a dysregulated cell death mechanism often observed during chemotherapy. Autophagy plays a cytoprotective role by maintaining cellular homeostasis and recycling organelles, and emerging evidence points to its significant role in promoting cancer progression. Cisplatin, a DNA-intercalating agent known for inducing cell death and cell cycle arrest, often encounters resistance in chemotherapy treatments. Recent studies have shown that autophagy can contribute to cisplatin resistance or insensitivity in tumor cells through various mechanisms. This resistance can be mediated by protective autophagy, which suppresses apoptosis. Additionally, autophagy-related changes in tumor cell metastasis, particularly the induction of Epithelial-Mesenchymal Transition (EMT), can also lead to cisplatin resistance. Nevertheless, pharmacological strategies targeting the regulation of autophagy and apoptosis offer promising avenues to enhance cisplatin sensitivity in cancer therapy. Notably, numerous non-coding RNAs have been identified as regulators of autophagy in the context of cisplatin chemotherapy. Thus, therapeutic targeting of autophagy or its associated pathways holds potential for restoring cisplatin sensitivity, highlighting an important direction for future clinical research.
Collapse
Affiliation(s)
- Yang Yang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Lixia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL, USA
| | - Miaomiao Gu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Ji Yan Road, Jinan, Shandong, China
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc, 6, Tide Street, Boston, MA, 02210, USA
| | - Israel Cañadas
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | - Yuzhuo Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| | - Jianyong Zou
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, China.
| |
Collapse
|
7
|
Nakhla DS, Mekkawy AI, Naguib YW, Silva AD, Gao D, Ah Kim J, Alhaj-Suliman SO, Acri TM, Kumar Patel K, Ernst S, Stoltz DA, Welsh MJ, Salem AK. Injectable long-acting ivacaftor-loaded poly (lactide-co-glycolide) microparticle formulations for the treatment of cystic fibrosis: In vitro characterization and in vivo pharmacokinetics in mice. Int J Pharm 2024; 650:123693. [PMID: 38081555 PMCID: PMC10843602 DOI: 10.1016/j.ijpharm.2023.123693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
Optimizing a sustained-release drug delivery system for the treatment of cystic fibrosis (CF) is crucial for decreasing the dosing frequency and improving patients' compliance with the treatment regimen. In the current work, we developed an injectable poly(D,L-lactide-co-glycolide) (PLGA) microparticle formulation loaded with ivacaftor, a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator that increases the open probability of the CFTR anion channel, using a single emulsion solvent evaporation technique. We aimed to study the effect of different parameters on the characteristics of the prepared formulations to select an optimized microparticle formulation to be used in an in vivo pharmacokinetic study in mice. First, a suite of ivacaftor-loaded microparticles were prepared using different formulation parameters in order to study the effect of varying these parameters on microparticle size, morphology, drug loading, encapsulation efficiency, and in vitro release profiles. Prepared microparticles were spherical with diameters ranging from 1.91-6.93 µm, percent drug loading (% DL) of 3.91-10.3%, percent encapsulation efficiencies (% EE) of 26.6-100%, and an overall slow cumulative release profile. We selected the formulation that demonstrated optimal combined % DL and % EE values (8.25 and 90.7%, respectively) for further studies. These microparticles had an average particle size of 6.83 µm and a slow tri-phasic in vitro release profile (up to 6 weeks). In vivo pharmacokinetic studies in mice showed that the subcutaneously injected microparticles resulted in steady plasma levels of ivacaftor over a period of 28 days, and a 6-fold increase in AUC 0 - t (71.6 µg/mL*h) compared to the intravenously injected soluble ivacaftor (12.3 µg/mL*h). Our results suggest that this novel ivacaftor-loaded microparticle formulation could potentially eliminate the need for the frequent daily administration of ivacaftor to people with CF thus improving their compliance and ensuring successful treatment outcomes.
Collapse
Affiliation(s)
- David S Nakhla
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aml I Mekkawy
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Sohag 82524, Egypt
| | - Youssef W Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aaron D Silva
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Dylan Gao
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jeong Ah Kim
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Timothy M Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Krishna Kumar Patel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Sarah Ernst
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - David A Stoltz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Michael J Welsh
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
8
|
Zhou H, Zhang Y, Jin J, Shen K, Yang Y, Lao P. Prognostic evaluation of the novel blueprint of DNA methylation sites by integrating bulk RNA-sequencing and methylation modification data in endometrial cancer. J Gene Med 2024; 26:e3638. [PMID: 38011892 DOI: 10.1002/jgm.3638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
INTRODUCTION Endometrial cancer (EC) is a prevalent malignancy affecting the female population, with an increasing incidence among younger age groups. DNA methylation, a common epigenetic modification, is well-established to play a key role in cancer progression. We suspected whether DNA methylation could be used as biomarkers for EC prognosis. METHODS In the present study, we analyzed bulk RNA-sequencing data from 544 EC patients and DNA methylation data from 430 EC patients in the TCGA-UCEC cohort. We applied weighted correlation network analysis to select a key gene set associated with panoptosis. We conducted correlation analysis between transcriptomic data of the selected key genes and DNA methylation data to identify valuable DNA methylation sites. These sites were further screened by Cox regression and least absolute shrinkage and selection operator analysis. Immune microenvironment differences between high-risk and low-risk groups were assessed using single-sample gene set enrichment analysi, xCell and MCPcounter algorithms. RESULTS Our results identified five DNA methylation sites (cg03906681, cg04549977, cg06029846, cg10043253 and cg15658376) with significant prognostic value in EC. We constructed a prognostic model using these sites, demonstrating satisfactory predictive performance. The low-risk group showed higher immune cell infiltration. Notably, methylation of site cg03906681 was negatively related to CD8 T cell infiltration, whereas cg04549977 exhibited positive correlations with immune infiltration, particularly in macrophages, activated B cells, dendritic cells and myeloid-derived suppressor cells. PD0325901_1060 was strongly correlated with risk scores, indicating a potential therapeutic response for high-risk EC patients. CONCLUSION We have developed a robust DNA methylation-based prognostic model for EC, which holds promise for improving prognosis prediction and personalized treatment approaches. These findings may contribute to better management of EC patients, particularly in identifying those at higher risk who may benefit from tailored interventions.
Collapse
Affiliation(s)
- Huanzhen Zhou
- Department of Obstetrics And Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yingzhi Zhang
- Department of Obstetrics And Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jing Jin
- Department of Obstetrics And Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Kewei Shen
- Department of Obstetrics And Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yang Yang
- Department of Obstetrics And Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Peiwei Lao
- Department of Obstetrics And Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|