1
|
Gallegos I, Varshney V, Kemppainen J, Odegard GM. Investigating the structure-property correlations of pyrolyzed phenolic resin as a function of degree of carbonization. NANOSCALE ADVANCES 2025:d4na00824c. [PMID: 39876922 PMCID: PMC11770810 DOI: 10.1039/d4na00824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/04/2025] [Indexed: 01/31/2025]
Abstract
Carbon-carbon (C/C) composites are attractive materials for high-speed flights and terrestrial atmospheric reentry applications due to their insulating thermal properties, thermal resistance, and high strength-to-weight ratio. It is important to understand the evolving structure-property correlations in these materials during pyrolysis, but the extreme laboratory conditions required to produce C/C composites make it difficult to quantify the properties in situ. This work presents an atomistic modeling methodology to pyrolyze a crosslinked phenolic resin network and track the evolving thermomechanical properties of the skeletal matrix during simulated pyrolysis. First, the crosslinked resin is pyrolyzed and the resulting char yield and mass density are verified to match experimental values, establishing the model's powerful predictive capabilities. Young's modulus, yield stress, Poisson's ratio, and thermal conductivity are calculated for the polymerized structure, intermediate pyrolyzed structures, and fully pyrolyzed structure to reveal structure-property correlations, and the evolution of properties are linked to observed structural features. It is determined that reduction in fractional free volume and densification of the resin during pyrolysis contribute significantly to the increase in thermomechanical properties of the skeletal phenolic matrix. A complex interplay of the formation of six-membered carbon rings at the expense of five and seven-membered carbon rings is revealed to affect thermal conductivity. Increased anisotropy was observed in the latter stages of pyrolysis due to the development of aligned aromatic structures. Experimentally validated predictive atomistic models are a key first step to multiscale process modeling of C/C composites to optimize next-generation materials.
Collapse
Affiliation(s)
- Ivan Gallegos
- Michigan Technological University 1400 Townsend Dr Houghton MI 49931 USA
| | - Vikas Varshney
- Air Force Research Laboratory, Wright-Patterson Air Force Base 2941 Hobson Way OH 45433 USA
| | - Josh Kemppainen
- Michigan Technological University 1400 Townsend Dr Houghton MI 49931 USA
| | - Gregory M Odegard
- Michigan Technological University 1400 Townsend Dr Houghton MI 49931 USA
| |
Collapse
|
2
|
Joshi M, Ren X, Lin T, Joshi R. Mechanistic Insights into Gas Adsorption on 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406706. [PMID: 39562164 DOI: 10.1002/smll.202406706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Owing to their exceptional characteristics, such as one-atom thickness, high specific surface area, and tunability of surfaces, 2D materials are excellent templates to study the surface-dependent gas adsorption phenomenon. Moreover, the properties of 2D materials like morphology, bandgap, structure, and carrier mobility can be modulated easily by modification methods such as functionalization, defect and doping engineering. These modifications create and activate unconventional inert and active sites, leading to the selective adsorption of gases via mechanisms such as charge transfer kinetics, Schottky-barrier modification, and surface interactions. These methods enhance the adsorption sites by adding covalent and non-covalent moieties to the 2D surface and play a critical role in developing ultrafast gas sensing with high sensitivity, selectivity, fast response/recovery rates, and low detection limits. Here, this perspective is presented on the mechanism of the adsorption process of gases on modified 2D surfaces based on recent studies related to adsorption-dependent applications of 2D materials.
Collapse
Affiliation(s)
- Manisha Joshi
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiaojun Ren
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tongxi Lin
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rakesh Joshi
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Li Y, Wei C, Kooi SE, Veysset D, Guo C, Gan Y, Zhuo Y, Chen G, Naraghi M, Nelson KA, Wu C. Tough Monolayer Silver Nanowire-Reinforced Double-Layer Graphene. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39361518 DOI: 10.1021/acsami.4c04768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Mixed-dimensional nanomaterials composed of one-dimensional (1D) and two-dimensional (2D) nanomaterials, such as graphene-silver nanowire (AgNW) composite sandwiched structures, are promising candidates as building blocks for multifunctional structures and materials. However, their mechanical behavior and failure mechanism have not yet been fully understood. In this work, we have performed integrated experimental, theoretical, and numerical studies to explore the performance and failure modes of graphene-AgNW composite under tensile and impact loading conditions. In situ tensile tests using a nanoindenter, implemented with a push-to-pull device and a laser-induced projectile impact test system, are used to shed light on load-bearing mechanisms in graphene-AgNW composites. Multiple failure modes have been observed in both experimental setups and analyzed with numerical and theoretical models. Results show that in the tensile loading the distribution of AgNW, as characterized by the effective free length, is the key parameter determining the failure mode. As for the impact failure scenarios, compared with failure modes observed in pure graphene cases, the mechanical reinforcing effect of AgNW will transform the failure mode from a scattered tensile fracture along radial directions to a shear failure that is constrained in a relatively local domain. Theoretical analysis using shear lag modeling, Timoshenko plate theory, molecular dynamics modeling, and finite element modeling approaches are adopted to further establish the failure modes.
Collapse
Affiliation(s)
- Yanxiao Li
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Congjie Wei
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Steven E Kooi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David Veysset
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | | | - Yuxiang Gan
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Ying Zhuo
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Genda Chen
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Mohammad Naraghi
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Keith A Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenglin Wu
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77840, United States
| |
Collapse
|
4
|
Norhakim N, Gunasilan T, Kesuma ZR, Hawari HF, Burhanudin ZA. Elucidating the time-dependent charge neutrality point modulation of polymer-coated graphene field-effect transistors in an ambient environment. NANOTECHNOLOGY 2024; 35:505201. [PMID: 39284313 DOI: 10.1088/1361-6528/ad7b42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
The charge neutrality point (CNP) is one of the essential parameters in the development of graphene field-effect transistors (GFETs). For GFET with an intrinsic graphene channel layer, the CNP is typically near-zero-volt gate voltage, implying that a well-balanced density of electrons and holes exists in the graphene channel layer. Fabricated GFET, however, typically exhibits CNP that is either positively or negatively shifted from the near-zero-volt gate voltage, implying that the graphene channel layer is unintentionally doped, leading to a unipolar GFET transfer characteristic. Furthermore, the CNP is also modulated in time, indicating that charges are dynamically induced in the graphene channel layer. In this work, understanding and mitigating the CNP shift were attempted by introducing passivation layers made of polyvinyl alcohol and polydimethylsiloxane onto the graphene channel layer. The CNP was found to be negatively shifted, recovered back to near-zero-volt gate voltage, and then positively shifted in time. By analyzing the charge density, carrier mobility, and correlation between the CNP and the charge density, it can be concluded that positive CNP shifts can be attributed to the charge trapping at the graphene/SiO2interface. The negative CNP shift, on the other hand, is caused by dipole coupling between dipoles in the polymer layer and carriers on the surface of the graphene layer. By gaining a deeper understanding of the intricate mechanisms governing the CNP shifts, an ambiently stable GFET suitable for next-generation electronics could be realized.
Collapse
Affiliation(s)
- Nadia Norhakim
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Thaachayinie Gunasilan
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Zayyan Rafi Kesuma
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Huzein Fahmi Hawari
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Zainal Arif Burhanudin
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
- Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| |
Collapse
|
5
|
S Araújo W, Caldeira Rêgo CR, Guedes-Sobrinho D, Cavalheiro Dias A, Rodrigues do Couto I, Bordin JR, Ferreira de Matos C, Piotrowski MJ. Quantum Simulations and Experimental Insights into Glyphosate Adsorption Using Graphene-Based Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31500-31512. [PMID: 38842224 DOI: 10.1021/acsami.4c05733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The increasing global demand for food and agrarian development brings to light a dual issue concerning the use of substances that are crucial for increasing productivity yet can be harmful to human health and the environment when misused. Herein, we combine insights from high-level quantum simulations and experimental findings to elucidate the fundamental physicochemical mechanisms behind developing graphene-based nanomaterials for the adsorption of emerging contaminants, with a specific focus on pesticide glyphosate (GLY). We conducted a comprehensive theoretical and experimental investigation of graphene-based supports as promising candidates for detecting, sensing, capturing, and removing GLY applications. By combining ab initio molecular dynamics and density functional theory calculations, we explored several chemical environments encountered by GLY during its interaction with graphene-based substrates, including pristine and punctual defect regions. Our results unveiled distinct interaction behaviors: physisorption in pristine and doped graphene regions, chemisorption leading to molecular dissociation in vacancy-type defect regions, and complex transformations involving the capture of N and O atoms from impurity-adsorbed graphene, resulting in the formation of new GLY-derived compounds. The theoretical findings were substantiated by FTIR and Raman spectroscopy, which proposed a mechanism explaining GLY adsorption in graphene-based nanomaterials. The comprehensive evaluation of adsorption energies and associated properties provides valuable insights into the intricate nature of these interactions, shedding light on potential applications and guiding future experimental investigations of graphene-based nanofilters for water decontamination.
Collapse
Affiliation(s)
- Wanderson S Araújo
- Department of Physics, Federal University of Pelotas, PO Box 354, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Celso Ricardo Caldeira Rêgo
- Institute of Nanotechnology Hermann-von-Helmholtz-Platz, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Diego Guedes-Sobrinho
- Chemistry Department, Federal University of Paraná, Curitiba, Paraná 81531-980, Brazil
| | - Alexandre Cavalheiro Dias
- Institute of Physics and International Center of Physics, University of Brasília, Brasília, Federal District 70919-970, Brazil
| | - Isadora Rodrigues do Couto
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - José Rafael Bordin
- Department of Physics, Federal University of Pelotas, PO Box 354, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Carolina Ferreira de Matos
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Maurício Jeomar Piotrowski
- Department of Physics, Federal University of Pelotas, PO Box 354, Pelotas, Rio Grande do Sul 96010-900, Brazil
| |
Collapse
|
6
|
Vijeata A, Chaudhary GR, Chaudhary S, Ibrahim AA, Umar A. Recent advancements and prospects in carbon-based nanomaterials derived from biomass for environmental remediation applications. CHEMOSPHERE 2024; 357:141935. [PMID: 38636909 DOI: 10.1016/j.chemosphere.2024.141935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
The conversion of waste biomass into a value-added carbonaceous nanomaterial highlights the appealing power of biomass valorization. The advantages of using sustainable and cheap biomass precursors exhibit the tremendous opportunity for boosting energy production and their application in environmental remediation processes. This review emphasis the development and production of carbon-based nanomaterials derived from biomass, which possess favourable characteristics such as biocompatibility and photoluminescence. The advantages and limitations of various nanomaterials synthesised from different precursors were also discussed with insights into their physicochemical properties. The surface morphology of the porous nanomaterials is also explored along with their characteristic properties like regenerative nature, non-toxicity, ecofriendly nature, unique surface area, etc. The incorporation of various functional groups confers superiority of these materials, resulting in unique and advanced functional properties. Further, the use of these biomass derived nanomaterials was also explored in different applications like adsorption, photocatalysis and sensing of hazardous pollutants, etc. The challenges and outcomes obtained from different carbon-based nanomaterials are briefly outlined and discussed in this review.
Collapse
Affiliation(s)
- Anjali Vijeata
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| |
Collapse
|
7
|
Yamamoto M, Goto S, Tang R, Yamazaki K. Toward three-dimensionally ordered nanoporous graphene materials: template synthesis, structure, and applications. Chem Sci 2024; 15:1953-1965. [PMID: 38332834 PMCID: PMC10848746 DOI: 10.1039/d3sc05022j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/23/2023] [Indexed: 02/10/2024] Open
Abstract
Precise template synthesis will realize three-dimensionally ordered nanoporous graphenes (NPGs) with a spatially controlled seamless graphene structure and fewer edges. These structural features result in superelastic nature, high electrochemical stability, high electrical conductivity, and fast diffusion of gases and ions at the same time. Such innovative 3D graphene materials are conducive to solving energy-related issues for a better future. To further improve the attractive properties of NPGs, we review the template synthesis and its mechanism by chemical vapor deposition of hydrocarbons, analysis of the nanoporous graphene structure, and applications in electrochemical and mechanical devices.
Collapse
Affiliation(s)
- Masanori Yamamoto
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Ookayama 2-12-1 Meguro Tokyo 152-8550 Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Shunsuke Goto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Rui Tang
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Kaoru Yamazaki
- RIKEN Center for Advanced Photonics, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| |
Collapse
|
8
|
Amodu IO, Olaojotule FA, Ogbogu MN, Olaiya OA, Benjamin I, Adeyinka AS, Louis H. Adsorption and sensor performance of transition metal-decorated zirconium-doped silicon carbide nanotubes for NO 2 gas application: a computational insight. RSC Adv 2024; 14:5351-5369. [PMID: 38348297 PMCID: PMC10859909 DOI: 10.1039/d3ra08796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
Owing to the fact that the detection limit of already existing sensor-devices is below 100% efficiency, the use of 3D nanomaterials as detectors and sensors for various pollutants has attracted interest from researchers in this field. Therefore, the sensing potentials of bare and the impact of Cu-group transition metal (Cu, Ag, Au)-functionalized silicon carbide nanotube (SiCNT) nanostructured surfaces were examined towards the efficient detection of NO2 gas in the atmosphere. All computational calculations were carried out using the density functional theory (DFT) electronic structure method at the B3LYP-D3(BJ)/def2svp level of theory. The mechanistic results showed that the Cu-functionalized silicon carbide nanotube surface possesses the greatest adsorption energies of -3.780 and -2.925 eV, corresponding to the adsorption at the o-site and n-site, respectively. Furthermore, the lowest energy gap of 2.095 eV for the Cu-functionalized surface indicates that adsorption at the o-site is the most stable. The stability of both adsorption sites on the Cu-functionalized surface was attributed to the small ellipticity (ε) values obtained. Sensor mechanisms confirmed that among the surfaces, the Cu-functionalized surface exhibited the best sensing properties, including sensitivity, conductivity, and enhanced adsorption capacity. Hence, the Cu-functionalized SiCNT can be considered a promising choice as a gas sensor material.
Collapse
Affiliation(s)
- Ismail O Amodu
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Mathematics, University of Calabar Calabar Nigeria
| | - Faith A Olaojotule
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
| | - Miracle N Ogbogu
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
| | | | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
| | - Adedapo S Adeyinka
- Department of Chemical Sciences, University of Johannesburg Pretoria South Africa
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- School of Chemistry, University of Leeds Leeds LS2 9JT UK
| |
Collapse
|
9
|
Yamazaki K, Goto S, Yoshino S, Gubarevich A, Yoshida K, Kato H, Yamamoto M. Surface defect healing in annealing from nanoporous carbons to nanoporous graphenes. Phys Chem Chem Phys 2023. [PMID: 38019669 DOI: 10.1039/d3cp04921c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nanoporous graphene (NPG) materials have the pronounced electrochemical stability of the seamless graphene structures developed over the 3D space. We revisited the Raman spectra of nanoporous carbons (NPCs) synthesized using θ-/γ-Al2O3 templates and NPGs converted from NPCs by annealing at 1800 °C to identify the type and density of defects. We found that both the NPCs and NPGs mostly consist of single-layered graphene with a few single vacancies and Stone-Wales defects. The density of vacancy defect per hexagon in the graphene sheet is estimated to be 10-2 for NPCs, while the annealing reduced the value to 10-3-10-4 for NPGs. This supports the outstanding chemical and electrochemical stability of the novel porous carbon materials.
Collapse
Affiliation(s)
- Kaoru Yamazaki
- RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Shunsuke Goto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Shunya Yoshino
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Anna Gubarevich
- Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Katsumi Yoshida
- Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Hideki Kato
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Masanori Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro, Tokyo 152-8550, Japan.
| |
Collapse
|