1
|
Martina K, Tagliapietra S, Calsolaro F, Paraschiv A, Sacco M, Picollo F, Sturari S, Arpà P, Mino L, Barge A, Cravotto G. Covalent Functionalisation of rGO and Nanodiamonds: Complementary Versatility and Applicability of Azomethine Ylide, Nitrile Oxide and Nitrone. Chempluschem 2024:e202400510. [PMID: 39668110 DOI: 10.1002/cplu.202400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
The existing synthetic protocols for the direct functionalization of carbon-based nanomaterials often entail limitations due to their harsh reaction conditions, which require the use of high temperatures for extended periods. This study aims to overcome these limitations by developing mild and efficient synthetic protocols around 1,3-dipolar cycloaddition. Beginning with the well-established azomethine ylide derivatization, we progress to the utilization of nitrile oxide, and of nitrone derivatives for the functionalization of reduced graphene oxide (rGO) as well as of nanodiamonds (NDs). This comparative work employs both classical heating and microwave activation with the aim of reducing reaction times and enhancing efficacy. Results demonstrate that nitrone can react at 60 °C and that the reaction temperature may be decreased to 30 °C with nitrile oxide. Excellent progress was made in reducing the large excess of dipoles typically required for derivatization. Nitrile oxide was proved to be the most efficient in terms of derivatization degree, while nitrone was the most versatile reagent, facilitating the decoration of the carbon nanolayer with disubstituted dihydroisoxazole. To accurately assess the degree of functionalization, the reaction products underwent characterization using various spectroscopic and analytical techniques. Additionally, an indirect evaluation of the reaction outcome was conducted through Fmoc deprotection and quantification.
Collapse
Affiliation(s)
- Katia Martina
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Silvia Tagliapietra
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Federica Calsolaro
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Andrei Paraschiv
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Mirko Sacco
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Federico Picollo
- Department of Physics and "NIS Inter-departmental Centre", National Institute of Nuclear Physics, University of Turin, 10125, Torino, Italy
| | - Sofia Sturari
- Department of Physics and "NIS Inter-departmental Centre", National Institute of Nuclear Physics, University of Turin, 10125, Torino, Italy
| | - Pietro Arpà
- Department of Physics and "NIS Inter-departmental Centre", National Institute of Nuclear Physics, University of Turin, 10125, Torino, Italy
| | - Lorenzo Mino
- Department of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Alessandro Barge
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| |
Collapse
|
2
|
Machuca A, Peñalver GA, Garcia RAF, Martinez-Lopez A, Castillo-Lluva S, Garcia-Calvo E, Luque-Garcia JL. Advancing rhodium nanoparticle-based photodynamic cancer therapy: quantitative proteomics and in vivo assessment reveal mechanisms targeting tumor metabolism, progression and drug resistance. J Mater Chem B 2024; 12:12073-12086. [PMID: 39453320 DOI: 10.1039/d4tb01631a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Rhodium nanoparticles have been recently discovered as good photosensitizers with great potential in cancer photodynamic therapy by effectively inducing cytotoxicity in cancer cells under near-infrared laser. This study evaluates the molecular mechanisms underlying such antitumoral effect through quantitative proteomics. The results revealed that rhodium nanoparticle-based photodynamic therapy disrupts tumor metabolism by downregulating key proteins involved in ATP synthesis and mitochondrial function, leading to compromised energy production. The treatment also induces oxidative stress and apoptosis while targeting the invasion capacity of cancer cells. Additionally, key proteins involved in drug resistance are also affected, demonstrating the efficacy of the treatment in a multi-drug resistant cell line. In vivo evaluation using a chicken embryo model also confirmed the effectiveness of the proposed therapy in reducing tumor growth without affecting embryo viability.
Collapse
Affiliation(s)
- Andres Machuca
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Gabriel A Peñalver
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | | | - Angelica Martinez-Lopez
- Department Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Sonia Castillo-Lluva
- Department Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Estefania Garcia-Calvo
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Jose L Luque-Garcia
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Maturi S, Baschieri A, Locatelli E, Buccioli M, Comes Franchini M, Sambri L. Long-chain surface-modified red-emitting carbon dots as fluorescent additives for 3D printing vat-photopolymerization. NANOSCALE ADVANCES 2024:d4na00617h. [PMID: 39640004 PMCID: PMC11615732 DOI: 10.1039/d4na00617h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Carbon dots have recently attracted tremendous scientific attention thanks to their enhanced luminescence properties, photostability and low toxicity. In particular, red-emitting carbon dots (RCDs) are assuming increasing importance in biomedical applications, such as bio-imaging and phototherapy. At the same time, the possibility to create functional and complex objects by means of vat-photopolymerization-based three-dimensional (3D) printing techniques is continuously growing. This work describes the synthesis of long-chain surface-modified red emitting carbon dots, L-RCDs by esterification of RCDs, obtained from green reagents with a new solvothermal synthesis, and their employment as fluorescent additives in two formulations of photopolymerizable resins. The printing process proceeded smoothly in all cases, and red-emitting objects with different mechanical properties have been successfully obtained.
Collapse
Affiliation(s)
- Simone Maturi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via Piero Gobetti 85 40129 Bologna Italy
| | - Andrea Baschieri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR) Via Piero Gobetti 101 40129 Bologna Italy
| | - Erica Locatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via Piero Gobetti 85 40129 Bologna Italy
| | - Martina Buccioli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via Piero Gobetti 85 40129 Bologna Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via Piero Gobetti 85 40129 Bologna Italy
| | - Letizia Sambri
- Department of Industrial Chemistry "Toso Montanari", University of Bologna Via Piero Gobetti 85 40129 Bologna Italy
| |
Collapse
|
4
|
Yu X, Xu C, Sun J, Xu H, Huang H, Gan Z, George A, Ouyang S, Liu F. Recent developments in two-dimensional molybdenum disulfide-based multimodal cancer theranostics. J Nanobiotechnology 2024; 22:515. [PMID: 39198894 PMCID: PMC11351052 DOI: 10.1186/s12951-024-02785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advancements in cancer research have led to the generation of innovative nanomaterials for improved diagnostic and therapeutic strategies. Despite the proven potential of two-dimensional (2D) molybdenum disulfide (MoS2) as a versatile platform in biomedical applications, few review articles have focused on MoS2-based platforms for cancer theranostics. This review aims to fill this gap by providing a comprehensive overview of the latest developments in 2D MoS2 cancer theranostics and emerging strategies in this field. This review highlights the potential applications of 2D MoS2 in single-model imaging and therapy, including fluorescence imaging, photoacoustic imaging, photothermal therapy, and catalytic therapy. This review further classifies the potential of 2D MoS2 in multimodal imaging for diagnostic and synergistic theranostic platforms. In particular, this review underscores the progress of 2D MoS2 as an integrated drug delivery system, covering a broad spectrum of therapeutic strategies from chemotherapy and gene therapy to immunotherapy and photodynamic therapy. Finally, this review discusses the current challenges and future perspectives in meeting the diverse demands of advanced cancer diagnostic and theranostic applications.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Chen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
| | - Hainan Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziyang Gan
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Antony George
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Sihui Ouyang
- College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China.
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
5
|
Sun K, Yan C, Dai X, Shi Y, Li F, Chen L, Sun J, Chen Y, Shi J. Catalytic Nanodots-Driven Pyroptosis Suppression in Nucleus Pulposus for Antioxidant Intervention of Intervertebral Disc Degeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313248. [PMID: 38299823 DOI: 10.1002/adma.202313248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Low back pain resulting from intervertebral disc degeneration (IVDD) is a prevalent global concern; however, its underlying mechanism remains elusive. Single-cell sequencing analyses revealed the critical involvement of pyroptosis in IVDD. Considering the involvement of reactive oxygen species (ROS) as the primary instigator of pyroptosis and the lack of an efficient intervention approach, this study developed carbonized Mn-containing nanodots (MCDs) as ROS-scavenging catalytic biomaterials to suppress pyroptosis of nucleus pulposus (NP) cells to efficiently alleviate IVDD. Catalytic MCDs have superior efficacy in scavenging intracellular ROS and rescuing homeostasis in the NP microenvironment compared with N-acetylcysteine, a classical antioxidant. The data validates that pyroptosis plays a vital role in mediating the protective effects of catalytic MCDs against oxidative stress. Systematic in vivo assessments substantiate the effectiveness of MCDs in rescuing a puncture-induced IVDD rat model, further demonstrating their ability to suppress pyroptosis. This study highlights the potential of antioxidant catalytic nanomedicine as a pyroptosis inhibitor and mechanistically unveils an efficient strategy for the treatment of IVDD.
Collapse
Affiliation(s)
- Kaiqiang Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, Shanghai, 200003, P. R. China
- Department of Orthopedics, Naval Medical Center of PLA, Shanghai, 200052, P. R. China
| | - Chen Yan
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, Shanghai, 200003, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yangyang Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, Shanghai, 200003, P. R. China
| | - Fudong Li
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, Shanghai, 200003, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, Shanghai, 200003, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, 325088, P. R. China
| | - Jiangang Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, Shanghai, 200003, P. R. China
| |
Collapse
|
6
|
Wang S, He H, Mao Y, Zhang Y, Gu N. Advances in Atherosclerosis Theranostics Harnessing Iron Oxide-Based Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308298. [PMID: 38368274 PMCID: PMC11077671 DOI: 10.1002/advs.202308298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Atherosclerosis, a multifaceted chronic inflammatory disease, has a profound impact on cardiovascular health. However, the critical limitations of atherosclerosis management include the delayed detection of advanced stages, the intricate assessment of plaque stability, and the absence of efficacious therapeutic strategies. Nanotheranostic based on nanotechnology offers a novel paradigm for addressing these challenges by amalgamating advanced imaging capabilities with targeted therapeutic interventions. Meanwhile, iron oxide nanoparticles have emerged as compelling candidates for theranostic applications in atherosclerosis due to their magnetic resonance imaging capability and biosafety. This review delineates the current state and prospects of iron oxide nanoparticle-based nanotheranostics in the realm of atherosclerosis, including pivotal aspects of atherosclerosis development, the pertinent targeting strategies involved in disease pathogenesis, and the diagnostic and therapeutic roles of iron oxide nanoparticles. Furthermore, this review provides a comprehensive overview of theranostic nanomedicine approaches employing iron oxide nanoparticles, encompassing chemical therapy, physical stimulation therapy, and biological therapy. Finally, this review proposes and discusses the challenges and prospects associated with translating these innovative strategies into clinically viable anti-atherosclerosis interventions. In conclusion, this review offers new insights into the future of atherosclerosis theranostic, showcasing the remarkable potential of iron oxide-based nanoparticles as versatile tools in the battle against atherosclerosis.
Collapse
Affiliation(s)
- Shi Wang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Hongliang He
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Yu Mao
- School of MedicineNanjing UniversityNanjing210093P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Sciences & Medical EngineeringSoutheast UniversityNanjing210009P. R. China
| | - Ning Gu
- School of MedicineNanjing UniversityNanjing210093P. R. China
| |
Collapse
|
7
|
Yu H, He X, Gu X, Hou Y, Zhao H, Gao L, An R, Wang J. Carbon-coated selenium nanoparticles for photothermal therapy in choriocarcinoma cells. RSC Adv 2024; 14:640-649. [PMID: 38173625 PMCID: PMC10758934 DOI: 10.1039/d3ra07085a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Choriocarcinoma can be cured by chemotherapy, but this causes resistance and severe side effects that bring about physical and psychological consequences for patients. Therefore, there is still an urgent need to find other alternative minimally invasive therapies to halt the progression of choriocarcinoma. Novel carbon-coated selenium nanoparticles (C-Se) were successfully synthesized for choriocarcinoma photothermal therapy. C-Se combined with near-infrared laser irradiation can inhibit the proliferation of human choriocarcinoma (JEG-3) cells and induce cell apoptosis. C-Se killed cells and produced ROS under near-infrared laser irradiation. Finally, the therapeutic mechanism of C-Se + laser was explored showing that C-Se + laser influenced numerous biological processes. Taken together, C-Se exhibited significant potential for choriocarcinoma photothermal therapy.
Collapse
Affiliation(s)
- Hui Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Xinyi He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Xiaoya Gu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Yuemin Hou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Haoyi Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Li Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Ruifang An
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Jia Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| |
Collapse
|
8
|
Stepanidenko EA, Vedernikova AA, Miruschenko MD, Dadadzhanov DR, Feferman D, Zhang B, Qu S, Ushakova EV. Red-Emissive Center Formation within Carbon Dots Based on Citric Acid and Formamide. J Phys Chem Lett 2023; 14:11522-11528. [PMID: 38091348 DOI: 10.1021/acs.jpclett.3c02837] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The formation of red-emissive optical centers in carbon dots based on citric acid and formamide was investigated by varying the synthesis parameters with focus on finding optimal─necessary and sufficient─amount of precursors to decrease byproduct amount and to increase the chemical yield of red-emissive carbon dots. The emission is observed at 640 nm excited at 590 nm and quantum yield reaches up 19%. A high chemical yield of carbon dots of 26% was achieved at an optimal molar ratio of citric acid to formamide of 1:4.
Collapse
Affiliation(s)
- Evgeniia A Stepanidenko
- International Research and Education Center for Physics of Nanostructures, ITMO University, 197101 Saint Petersburg, Russia
| | - Anna A Vedernikova
- International Research and Education Center for Physics of Nanostructures, ITMO University, 197101 Saint Petersburg, Russia
| | - Mikhail D Miruschenko
- International Research and Education Center for Physics of Nanostructures, ITMO University, 197101 Saint Petersburg, Russia
| | - Daler R Dadadzhanov
- International Research and Education Center for Physics of Nanostructures, ITMO University, 197101 Saint Petersburg, Russia
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniel Feferman
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Bohan Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
| | - Elena V Ushakova
- International Research and Education Center for Physics of Nanostructures, ITMO University, 197101 Saint Petersburg, Russia
| |
Collapse
|
9
|
Alqurashi YE, Almalki SG, Ibrahim IM, Mohammed AO, Abd El Hady AE, Kamal M, Fatima F, Iqbal D. Biological Synthesis, Characterization, and Therapeutic Potential of S. commune-Mediated Gold Nanoparticles. Biomolecules 2023; 13:1785. [PMID: 38136655 PMCID: PMC10741590 DOI: 10.3390/biom13121785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Green-synthesized gold nanoparticles demonstrate several therapeutic benefits due to their safety, non-toxicity, accessibility, and ecological acceptance. In our study, gold nanoparticles (AuNPs) were created using an extracellular extract from the fungus Schizophyllum commune (S. commune). The reaction color was observed to be a reddish pink after a 24 h reaction, demonstrating the synthesis of the nanoparticles. The myco-produced nanoparticles were investigated using transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV-visible spectroscopy. The TEM pictures depicted sphere-like shapes with sizes ranging from 60 and 120 nm, with an average diameter of 90 nm, which is in agreement with the DLS results. Furthermore, the efficiency of the AuNPs' antifungal and cytotoxic properties, as well as their production of intracellular ROS, was evaluated. Our findings showed that the AuNPs have strong antifungal effects against Trichoderma sp. and Aspergillus flavus at increasing doses. Additionally, the AuNPs established a dose-dependent activity against human alveolar basal epithelial cells with adenocarcinoma (A549), demonstrating the potency of synthesized AuNPs as a cytotoxic agent. After 4 h of incubation with AuNPs, a significant increase in intracellular ROS was observed in cancer cells. Therefore, these metallic AuNPs produced by fungus (S. commune) can be used as an effective antifungal, anticancer, and non-toxic immunomodulatory delivery agent.
Collapse
Affiliation(s)
- Yaser E. Alqurashi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia; (A.O.M.); (A.E.A.E.H.)
| | - Sami G. Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia;
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Aisha O. Mohammed
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia; (A.O.M.); (A.E.A.E.H.)
| | - Amal E. Abd El Hady
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia; (A.O.M.); (A.E.A.E.H.)
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Faria Fatima
- Department of Agriculture, Integral Institute of Agriculture, Science and Technology, Integral University, Lucknow 226026, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia;
| |
Collapse
|