1
|
Ji R, Li N, Xu J, Huang R, Yan X, Li X, Sun Y, Li C. Regulating the dispersion of CuO over SiO 2 surface for selective oxidation of isobutane to tert-butanol. J Colloid Interface Sci 2025; 681:215-228. [PMID: 39626567 DOI: 10.1016/j.jcis.2024.11.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 12/15/2024]
Abstract
Controlling the highly selective oxidation of CH bonds in alkanes was still a challenge in the oxidation process, especially in oxygen atmospheres. Herein, three CuO/SiO2 catalysts were designed and prepared by regulating the introduction of copper species to achieve the selective oxidation of tertiary C-H of isobutane (i-C4H10) to tert-butanol (TBA). Under the condition of 130 °C and 1.5 h, CuO/SiO2-DP catalyst could achieve 92.7 % O2 conversion and 85.1 % TBA selectivity, and the cycle stability could be maintained. The improvement of catalytic performance could be attributed to the efficient utilization of Cu atoms, which was related to the regulating the formation of copper phyllosilicate and the full utilization of Si-OH on the surface of SiO2 during the catalyst synthesis process. Copper phyllosilicate formed a rich Si-O-Cu unit, enhanced the metal oxide-support interaction, inhibited the growth of copper species, improved the anchoring and dispersion of CuO, and ultimately improved the accessibility of substrate molecules on active CuO (111). In addition, the adsorption configuration of i-C4H10 and O2 on CuO (111) was determined by in-situ FT-IR and DFT, and the existence form of O2 after charge transfer was discussed. The reaction mechanism of i-C4H10 oxidation to TBA was revealed, which provided theoretical guidance for the selective preparation of TBA from i-C4H10 over metal oxides.
Collapse
Affiliation(s)
- Renjie Ji
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, PR China
| | - Ning Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, PR China
| | - Jiale Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, PR China
| | - Rui Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, PR China
| | - Xiaoyu Yan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, PR China
| | - Xiuyi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, PR China
| | - Yuhan Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, PR China
| | - Chunyi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, PR China.
| |
Collapse
|
2
|
Dai J, Sun Y, Liu Z, Zhang Y, Duan S, Wang R. Using In situ Transmission Electron Microscopy to Study Strong Metal-Support Interactions in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409673. [PMID: 39052276 DOI: 10.1002/anie.202409673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Precisely controlling the microstructure of supported metal catalysts and regulating metal-support interactions at the atomic level are essential for achieving highly efficient heterogeneous catalysts. Strong metal-support interaction (SMSI) not only stabilizes metal nanoparticles and improves their resistance to sintering but also modulates the electrical interaction between metal species and the support, optimizing the catalytic activity and selectivity. Therefore, understating the formation mechanism of SMSI and its dynamic evolution during the chemical reaction at the atomic scale is crucial for guiding the structural design and performance optimization of supported metal catalysts. Recent advancements in in situ transmission electron microscopy (TEM) have shed new light on these complex phenomena, providing deeper insights into the SMSI dynamics. Here, the research progress of in situ TEM investigation on SMSI in heterogeneous catalysis is systematically reviewed, focusing on the formation dynamics, structural evolution during the catalytic reactions, and regulation methods of SMSI. The significant advantages of in situ TEM technologies for SMSI research are also highlighted. Moreover, the challenges and probable development paths of in situ TEM studies on the SMSI are also provided.
Collapse
Affiliation(s)
- Jie Dai
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yifei Sun
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhewei Liu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yiyuan Zhang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Sibin Duan
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Ji J, Lin L, Hu Y, Xu J, Li Z. Thermally Stable Oxide-Capsulated Metal Nanoparticles Structure for Strong Metal-Support Interaction via Ultrafast Laser Plasmonic Nanowelding. SMALL METHODS 2024; 8:e2301612. [PMID: 39031877 DOI: 10.1002/smtd.202301612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/13/2024] [Indexed: 07/22/2024]
Abstract
Strong metal-support interaction (SMSI) has drawn much attention in heterogeneous catalysts due to its stable and excellent catalytic efficiency. However, construction of high-performance oxide-capsulated metal nanostructures meets great challenge in materials thermodynamic compatibility. In this work, dynamically controlled formation of oxide-capsulated metal nanoparticles (NPs) structures is demonstrated by ultrafast laser plasmonic nanowelding. Under the strong localized electromagnetic field interaction, metal (Au) NPs are dragged by an optical force toward oxide NPs (TiO2). Intense energy is simultaneously injected into this heterojunction area, where TiO2 is precisely ablated. With the embedding of metal into oxide, optical force on Au gradually turned from attractive to repulsive due to the varied metal-dielectric environment. Meanwhile, local ablated oxides are redeposited on Au NP. Upon the whole coverage of metal NP, the implantation behavior of metal NP is stopped, resulting in a controlled metal-oxide eccentric structure with capsulated oxide layer thickness ≈0.72-1.30 nm. These oxide-capsulated metal NPs structures can preserve their configurations even after thermal annealing in air at 600 °C for 10 min. This ultrafast laser plasmonic nanowelding can also extend to oxide-capsulated metal nanostructure fabrication with broad materials combinations (e.g., Au/ZnO, Au/MgO, etc.), which shows great potential in designing/constructing nanoscale high-performance catalysts.
Collapse
Affiliation(s)
- Junde Ji
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luchan Lin
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yifan Hu
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiayi Xu
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhuguo Li
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Zhou R, Wu D, Ma J, Ruan L, Feng Y, Ban C, Zhou K, Cai S, Gan LY, Zhou X. Boosting CO 2 piezo-reduction via metal-support interactions in Au/ZnO based catalysts. J Colloid Interface Sci 2024; 661:512-519. [PMID: 38308891 DOI: 10.1016/j.jcis.2024.01.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Confronting the challenge of climate change necessitates innovative approaches for the reduction of CO2 emissions. Metal-support interaction has been widely demonstrated to enable greatly improved performances in thermal-catalytic, photocatalytic and electrocatalytic CO2 reduction. However, its applicability and specifically its role in the emerging piezo-electrocatalytic CO2 reduction are unknown, severely hampering the utilizations of piezo-electrocatalysis in CO2 conversion. Herein, by adopting Au particles supported on ZnO (Au/ZnO) as a paradigm, it is found that the metal-support interaction can remarkably improve the separation and transfer of piezo-carriers and enhance CO2 adsorption. As a result, Au/ZnO demonstrates a substantially boosted activity for piezo-electrocatalytic CO2 reduction and the optimal sample exhibits a 37.3% increase in CO yield compared to the pristine ZnO. The integration of metal-support interactions opens a new avenue to the design of advanced piezo-electrocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Rundong Zhou
- Corpus Christi College, University of Cambridge, Cambridgeshire CB2 1RH, United Kingdom
| | - Di Wu
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Jiangping Ma
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Lujie Ruan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Yajie Feng
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Chaogang Ban
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Kai Zhou
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Songjiang Cai
- Chongqing DEPU Foreign Language School, Chongqing 401320, China
| | - Li-Yong Gan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
| | - Xiaoyuan Zhou
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China; Analytical and Testing Center, Chongqing University, Chongqing 401331, China.
| |
Collapse
|