1
|
Ming P, Li B, Li Q, Yuan L, Jiang X, Liu Y, Cai R, Zhou P, Lan X, Tao G, Xiao J. Multifunctional sericin-based biomineralized nanoplatforms with immunomodulatory and angio/osteo-genic activity for accelerated bone regeneration in periodontitis. Biomaterials 2025; 314:122885. [PMID: 39423514 DOI: 10.1016/j.biomaterials.2024.122885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Periodontitis is a chronic inflammation caused by dental plaque. It is characterized by the accumulation of excessive reactive oxygen species (ROS) and inflammatory mediators in the periodontal area. This affects the function of host cells, activates osteoclasts, and destroys periodontal tissue. Treatments such as local debridement or antibiotic therapy for ameliorating the overactive inflammatory microenvironment and repairing periodontal tissues are challenging. This paper reports multifunctional nanoplatforms (Se-CuSrHA@EGCG) based on sericin with ROS-scavenging, immunomodulatory, angiogenic, and osteogenic capabilities. The natural protein sericin, derived from silk cocoons, is used in water/oil emulsification and cross-linking processes to create sericin nanoparticles (Se NPs). Numerous binding sites are present on the surface of Se NPs. Ion-doped hydroxyapatite nanoparticles (Se-CuSrHA NPs) can be constructed using the force between positive and negative charges. After mineralization, an antioxidant coating is formed on the surface using polyethyleneimine (PEI)/epigallocatechin gallate (EGCG). Research conducted both in vitro and in vivo demonstrates that Se-CuSrHA@EGCG NPs can efficiently scavenge ROS, regulate macrophage polarization, increase the secretion of anti-inflammatory cytokines, and balance the immune microenvironment. In addition, Se-CuSrHA@EGCG stimulates angiogenesis, inhibits osteoclasts, and accelerates periodontal tissue repair. Therefore, this is a preferable strategy to accelerate bone regeneration in patients with periodontitis.
Collapse
Affiliation(s)
- Piaoye Ming
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Bojiang Li
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Qiumei Li
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Lingling Yuan
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xueyu Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yunfei Liu
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Rui Cai
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Peirong Zhou
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Wang Q, Gao Y, Chen Y, Wang X, Pei Q, Zhang T, Wang C, Pan J. Synergistic Enhancement of Antibacterial and Osteo-Immunomodulatory Activities of Titanium Implants via Dual-Responsive Multifunctional Surfaces. Adv Healthc Mater 2024:e2404260. [PMID: 39690750 DOI: 10.1002/adhm.202404260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Bone implant-associated infections and inflammations, primarily caused by bacteria colonization, frequently result in unsuccessful procedures and pose significant health risks to patients. To mitigate these challenges, the development of engineered implants with spatiotemporal regulation capabilities, designed to inhibit bacterial survival and modulate immune responses in the early stage, while promoting bone defect healing in the late stage is proposed. The implants are functionalized with ε-poly-l-lysine-phenylboronic acid (PP) via dynamic boronic ester bonds, which facilitate its release through a reactive oxygen species (ROS) and pH-responsive strategy, thereby establishing an antibacterial microenvironment on and around the implants. Additionally, the dynamic metal coordination interaction facilitates the loading and sustained release of Sr2+ under an acidic environment, providing immunomodulatory and osteogenic effects. The ROS/pH-responsive feature, coupled with the implant-bone tissue integration process, affords precise spatiotemporal regulation of the Ti-TA-Sr-PP implants. This strategy represents a promising approach for the preparation of advanced bone implants.
Collapse
Affiliation(s)
- Qing Wang
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ya Gao
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yanzheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Xuan Wang
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qingguo Pei
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Taiyu Zhang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Changping Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jinsong Pan
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
3
|
Zhao W, Zhang Y, Chen J, Hu D. Revolutionizing oral care: Reactive oxygen species (ROS)-Regulating biomaterials for combating infection and inflammation. Redox Biol 2024; 79:103451. [PMID: 39631247 DOI: 10.1016/j.redox.2024.103451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
The human oral cavity is home to a delicate symbiosis between its indigenous microbiota and the host, the balance of which is easily perturbed by local or systemic factors, leading to a spectrum of oral diseases such as dental caries, periodontitis, and pulp infections. Reactive oxygen species (ROS) play crucial roles in the host's innate immune defenses. However, in chronic inflammatory oral conditions, dysregulated immune responses can result in excessive ROS production, which in turn exacerbates inflammation and causes tissue damage. Conversely, the potent antimicrobial properties of ROS have inspired the development of various anti-infective therapies. Therefore, the strategic modulation of ROS by innovative biomaterials is emerging as a promising therapeutic approach for oral infection and inflammation. This review begins by highlighting the state-of-the-art of ROS-regulating biomaterials, which are designed to generate, scavenge, or modulate ROS in a bidirectional manner. We then delve into the latest innovations in these biomaterials and their applications in treating a range of oral diseases, including dental caries, endodontic and periapical conditions, periodontitis, peri-implantitis, and oral candidiasis. The review concludes with an overview of the current challenges and future potential of these biomaterials in clinical settings. This review provides novel insights for the ongoing development of ROS-based therapeutic strategies for oral diseases.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China; State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jing Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology Sichuan University, Chengdu, 610041, PR China.
| | - Danrong Hu
- Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
4
|
Li J, Kou N, Shi X, Kong L, Chen W, Yang X, Zhao Y, Zhao J, Wang F. Inhibition of soluble epoxide hydrolase reverses bone loss in periodontitis by upregulating EMCN and inhibiting osteoclasts. Stem Cell Res Ther 2024; 15:451. [PMID: 39587694 PMCID: PMC11590356 DOI: 10.1186/s13287-024-04054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Improving the microenvironment to augment endogenous regenerative potential has emerged as a fundamental concept for stimulating and expediting periodontal tissue repair and regeneration. Previous studies have demonstrated that TPPU, a soluble epoxide hydrolase inhibitor (sEHi), mediates the suppression of inflammatory bone loss in periodontitis models. However, the underlying mechanisms remain largely elusive. METHODS In this study, we constructed a human umbilical vein endothelial cell (HUVEC) and periodontal ligament stem cell (PDLSC) coculture system in vitro and tested the anti-inflammatory effect of TPPU under inflammatory conditions. The roles of HIF-1α and Endomucin (EMCN) in the anti-inflammatory effects of TPPU were analyzed. The effects of TPPU on osteogenesis and osteoclastogenesis in cocultured cells were examined. The in vivo periodontitis model further verified the effects of TPPU on inhibiting neutrophil adhesion and inflammation and inhibiting osteoclasts. RESULTS Our in vitro experiments demonstrated that TPPU enhances the interaction between mesenchymal stem cells and vascular endothelial cells to enhance anti-inflammatory and osteogenic differentiation effects and revealed a new anti-inflammatory mechanism of TPPU involving the upregulation of EMCN in endothelial cells to prevent lymphocyte recruitment. We also confirmed that TPPU inhibits osteoclast activity. Our in vivo findings showed that TPPU inhibits osteoclast activity and neutrophil adhesion and enhances periodontal tissue repair and regeneration. CONCLUSIONS TPPU promotes local regeneration in periodontitis by inhibiting inflammation and bone resorption. Thus, targeting soluble epoxide hydrolase represents an endogenous regenerative strategy for periodontitis treatment.
Collapse
Affiliation(s)
- Juanjuan Li
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
- The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116044, China
- Dalian Key Laboratory and Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, 116044, China
| | - Ni Kou
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
- The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116044, China
- Dalian Key Laboratory and Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, 116044, China
| | - Xiaoli Shi
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
- The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116044, China
- Dalian Key Laboratory and Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, 116044, China
| | - Lingwenyao Kong
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
- The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116044, China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
- The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116044, China
| | - Xueping Yang
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
- The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116044, China
| | - Yanrong Zhao
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
- The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116044, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| | - Fu Wang
- School of Stomatology, Dalian Medical University, Dalian, 116044, China.
- The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116044, China.
- Dalian Key Laboratory and Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
5
|
Sun Z, Wang T, Chen E, Xu L, Ding Y, Gu Z, Xiao S. Two birds with one stone: natural polyphenols boosted periodontitis treatment of chlorhexidine via reducing toxicity and regulating microenvironments. MATERIALS HORIZONS 2024. [PMID: 39508113 DOI: 10.1039/d4mh01137f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Chlorhexidine (CHX) is considered the gold standard for controlling periodontal plaque and has been extensively used as a topical agent in treating periodontitis. Nevertheless, the practical clinical application of CHX is still constrained by the inherent limitations of its properties, including toxicity, inadequate biofilm scavenging capacity, and single biological effect. In this study, polyphenolic epigallocatechin gallate (EGCG) has been employed to integrate with CHX to form an EGCG-CHX nanoplatform via a facile one-pot method. Due to the dynamic bonding between EGCG and CHX, the EGCG-CHX nanoparticles (NPs) show reduced toxicity and excellent response release behavior. Moreover, a series of in vitro and in vivo studies demonstrated that the EGCG-CHX NPs significantly enhanced the antibiofilm, antioxidative, anti-inflammatory, and autophagic flux activation effects of CHX, ultimately achieving an improved therapeutic effect on periodontitis. This study successfully developed a strategy boosting the efficiency of CHX for periodontitis treatment.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Enni Chen
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Lingyi Xu
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Yi Ding
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Shimeng Xiao
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| |
Collapse
|
6
|
Bai X, Peng W, Tang Y, Wang Z, Guo J, Song F, Yang H, Huang C. An NIR-propelled janus nanomotor with enhanced ROS-scavenging, immunomodulating and biofilm-eradicating capacity for periodontitis treatment. Bioact Mater 2024; 41:271-292. [PMID: 39149593 PMCID: PMC11324457 DOI: 10.1016/j.bioactmat.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Periodontitis is an inflammatory disease caused by bacterial biofilms, which leads to the destruction of periodontal tissue. Current treatments, such as mechanical cleaning and antibiotics, struggle to effectively address the persistent biofilms, inflammation, and tissue damage. A new approach involves developing a Janus nanomotor (J-CeM@Au) by coating cerium dioxide-doped mesoporous silica (CeM) with gold nanoparticles (AuNPs). This nanomotor exhibits thermophoretic motion when exposed to near-infrared (NIR) laser light due to the temperature gradient produced by the photothermal effects of asymmetrically distributed AuNPs. The NIR laser provides the energy for propulsion and activates the nanomotor's antibacterial properties, allowing it to penetrate biofilms and kill bacteria. Additionally, the nanomotor's ability to scavenge reactive oxygen species (ROS) can modulate the immune response and create a regenerative environment, promoting the healing of periodontal tissue. Overall, this multifunctional nanomotor offers a promising new approach for treating periodontitis by simultaneously addressing biofilm management and immune modulation with autonomous movement.
Collapse
Affiliation(s)
- Xuan Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wenan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ying Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ziming Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jingmei Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Fangfang Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Hongye Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
7
|
Desai N, Pande S, Vora L, Kommineni N. Correction to "Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration". ACS APPLIED BIO MATERIALS 2024; 7:6325-6331. [PMID: 39162584 PMCID: PMC11409221 DOI: 10.1021/acsabm.4c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
|
8
|
Zhang T, Shao M, Li H, Chen X, Zhang R, Wu J, Wang J, Guo Y. Decellularized Amnion Membrane Triggers Macrophage Polarization for Desired Host Immune Response. Adv Healthc Mater 2024:e2402139. [PMID: 39039984 DOI: 10.1002/adhm.202402139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Appropriate regulation of immunomodulatory responses, particularly acute inflammation involving macrophages, is crucial for the desired functionality of implants. Decellularized amnion membrane (DAM) is produced by removing cellular components and antigenicity, expected to reduce immunogenicity and the risk of inflammation. Despite the potential of DAM as biomaterial implants, few studies have investigated its specific effects on immunomodulation. Here, it is demonstrated that DAM can regulate macrophage-driven inflammatory response and potential mechanisms are investigated. In vitro results show that DAM significantly inhibits M1 polarization in LPS-induced macrophages by inhibiting Toll-like receptors (TLR) signaling pathway and TNF signaling pathway and promotes macrophage M2 polarization. Physical signals from the 3D micro-structure and the active protein, DCN, binding to key targets may play roles in the process. In the subcutaneous implant model in rats, DAM inhibits the persistence of inflammation and fibrous capsule formation, while promoting M2 macrophage polarization, thereby facilitating tissue regeneration. This study provides insights into DAM's effect and potential mechanisms on the balance of M1/M2 macrophage polarization in vitro and vivo, emphasizing the immunomodulation of ECM-based materials as promising implants.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mingfei Shao
- Hangzhou CASbios Medical Co., Hangzhou, 310000, P. R. China
| | - Hanfeng Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ruiying Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingwen Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Hangzhou CASbios Medical Co., Hangzhou, 310000, P. R. China
| | - Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
9
|
Desai N, Pande S, Vora LK, Kommineni N. Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration. ACS APPLIED BIO MATERIALS 2024; 7:4270-4292. [PMID: 38950103 PMCID: PMC11253102 DOI: 10.1021/acsabm.4c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Bone, a fundamental constituent of the human body, is a vital scaffold for support, protection, and locomotion, underscoring its pivotal role in maintaining skeletal integrity and overall functionality. However, factors such as trauma, disease, or aging can compromise bone structure, necessitating effective strategies for regeneration. Traditional approaches often lack biomimetic environments conducive to efficient tissue repair. Nanofibrous microspheres (NFMS) present a promising biomimetic platform for bone regeneration by mimicking the native extracellular matrix architecture. Through optimized fabrication techniques and the incorporation of active biomolecular components, NFMS can precisely replicate the nanostructure and biochemical cues essential for osteogenesis promotion. Furthermore, NFMS exhibit versatile properties, including tunable morphology, mechanical strength, and controlled release kinetics, augmenting their suitability for tailored bone tissue engineering applications. NFMS enhance cell recruitment, attachment, and proliferation, while promoting osteogenic differentiation and mineralization, thereby accelerating bone healing. This review highlights the pivotal role of NFMS in bone tissue engineering, elucidating their design principles and key attributes. By examining recent preclinical applications, we assess their current clinical status and discuss critical considerations for potential clinical translation. This review offers crucial insights for researchers at the intersection of biomaterials and tissue engineering, highlighting developments in this expanding field.
Collapse
Affiliation(s)
- Nimeet Desai
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Kandi 502285, India
| | - Shreya Pande
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Kandi 502285, India
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Nagavendra Kommineni
- Center
for Biomedical Research, Population Council, New York, New York 10065, United States
| |
Collapse
|
10
|
Li N, Wang J, Feng G, Liu Y, Shi Y, Wang Y, Chen L. Advances in biomaterials for oral-maxillofacial bone regeneration: spotlight on periodontal and alveolar bone strategies. Regen Biomater 2024; 11:rbae078. [PMID: 39055303 PMCID: PMC11272181 DOI: 10.1093/rb/rbae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
The intricate nature of oral-maxillofacial structure and function, coupled with the dynamic oral bacterial environment, presents formidable obstacles in addressing the repair and regeneration of oral-maxillofacial bone defects. Numerous characteristics should be noticed in oral-maxillofacial bone repair, such as irregular morphology of bone defects, homeostasis between hosts and microorganisms in the oral cavity and complex periodontal structures that facilitate epithelial ingrowth. Therefore, oral-maxillofacial bone repair necessitates restoration materials that adhere to stringent and specific demands. This review starts with exploring these particular requirements by introducing the particular characteristics of oral-maxillofacial bones and then summarizes the classifications of current bone repair materials in respect of composition and structure. Additionally, we discuss the modifications in current bone repair materials including improving mechanical properties, optimizing surface topography and pore structure and adding bioactive components such as elements, compounds, cells and their derivatives. Ultimately, we organize a range of potential optimization strategies and future perspectives for enhancing oral-maxillofacial bone repair materials, including physical environment manipulation, oral microbial homeostasis modulation, osteo-immune regulation, smart stimuli-responsive strategies and multifaceted approach for poly-pathic treatment, in the hope of providing some insights for researchers in this field. In summary, this review analyzes the complex demands of oral-maxillofacial bone repair, especially for periodontal and alveolar bone, concludes multifaceted strategies for corresponding biomaterials and aims to inspire future research in the pursuit of more effective treatment outcomes.
Collapse
Affiliation(s)
- Nayun Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuqing Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifan Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
11
|
Guo Y, Zhang C, Xie B, Xu W, Rao Z, Zhou P, Ma X, Chen J, Cai R, Tao G, He Y. Multifunctional Microneedle Patch Based on Metal-Phenolic Network with Photothermal Antimicrobial, ROS Scavenging, Immunomodulatory, and Angiogenesis for Programmed Treatment of Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33205-33222. [PMID: 38915205 DOI: 10.1021/acsami.4c07091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In diabetic patients with skin injuries, bacterial proliferation, accumulation of reactive oxygen species (ROS) in the tissues, and impaired angiogenesis make wound healing difficult. Therefore, eliminating bacteria, removing ROS, and promoting angiogenesis are necessary for treating acute diabetic wounds. In this study, benefiting from the ability of polyphenols to form a metal-phenolic network (MPN) with metal ions, TA-Eu MPN nanoparticles (TM NPs) were synthesized. The prepared photothermal agent CuS NPs and TM NPs were then loaded onto the supporting base and needle tips of PVA/HA (PH) microneedles, respectively, to obtain PH/CuS/TM microneedles. Antibacterial experiments showed that microneedles loaded with CuS NPs could remove bacteria by the photothermal effect. In vitro experiments showed that the microneedles could effectively scavenge ROS, inhibit macrophage polarization to the M1 type, and induce polarization to the M2 type as well as have the ability to promote vascular endothelial cell migration and angiogenesis. Furthermore, in vivo experiments showed that PH/CuS/TM microneedles accelerated wound healing by inhibiting pro-inflammatory cytokines and promoting angiogenesis in a diabetic rat wound model. Therefore, PH/CuS/TM microneedles have efficient antibacterial, ROS scavenging, anti-inflammatory, immunomodulatory, and angiogenic abilities and hold promise as wound dressings for treating acute diabetic wounds.
Collapse
Affiliation(s)
- Ye Guo
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Chuankai Zhang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Bingqing Xie
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Wei Xu
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Zihan Rao
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Peirong Zhou
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xuemin Ma
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Junliang Chen
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Rui Cai
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Gang Tao
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Yun He
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
12
|
Chen E, Wang T, Sun Z, Gu Z, Xiao S, Ding Y. Polyphenols-based intelligent oral barrier membranes for periodontal bone defect reconstruction. Regen Biomater 2024; 11:rbae058. [PMID: 38854682 PMCID: PMC11157154 DOI: 10.1093/rb/rbae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Periodontitis-induced periodontal bone defects significantly impact patients' daily lives. The guided tissue regeneration and guided bone regeneration techniques, which are based on barrier membranes, have brought hope for the regeneration of periodontal bone defects. However, traditional barrier membranes lack antimicrobial properties and cannot effectively regulate the complex oxidative stress microenvironment in periodontal bone defect areas, leading to unsatisfactory outcomes in promoting periodontal bone regeneration. To address these issues, our study selected the collagen barrier membrane as the substrate material and synthesized a novel barrier membrane (PO/4-BPBA/Mino@COL, PBMC) with an intelligent antimicrobial coating through a simple layer-by-layer assembly method, incorporating reactive oxygen species (ROS)-scavenging components, commercial dual-functional linkers and antimicrobial building blocks. Experimental results indicated that PBMC exhibited good degradability, hydrophilicity and ROS-responsiveness, allowing for the slow and controlled release of antimicrobial drugs. The outstanding antibacterial, antioxidant and biocompatibility properties of PBMC contributed to resistance to periodontal pathogen infection and regulation of the oxidative balance, while enhancing the migration and osteogenic differentiation of human periodontal ligament stem cells. Finally, using a rat periodontal bone defect model, the therapeutic effect of PBMC in promoting periodontal bone regeneration under infection conditions was confirmed. In summary, the novel barrier membranes designed in this study have significant potential for clinical application and provide a reference for the design of future periodontal regenerative functional materials.
Collapse
Affiliation(s)
- Enni Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiyuan Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shimeng Xiao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Jeong H, Byun H, Lee J, Han Y, Huh SJ, Shin H. Enhancement of Bone Tissue Regeneration with Multi-Functional Nanoparticles by Coordination of Immune, Osteogenic, and Angiogenic Responses. Adv Healthc Mater 2024:e2400232. [PMID: 38696729 DOI: 10.1002/adhm.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/15/2024] [Indexed: 05/04/2024]
Abstract
Inorganic nanoparticles are promising materials for bone tissue engineering due to their chemical resemblance to the native bone structure. However, most studies are unable to capture the entirety of the defective environment, providing limited bone regenerative abilities. Hence, this study aims to develop a multifunctional nanoparticle to collectively control the defective bone niche, including immune, angiogenic, and osteogenic systems. The nanoparticles, self-assembled by biomimetic mineralization and tannic acid (TA)-mediated metal-polyphenol network (MPN), are released sustainably after the incorporation within a gelatin cryogel. The released nanoparticles display a reduction in M1 macrophages by means of reactive oxygen species (ROS) elimination. Consequently, osteoclast maturation is also reduced, which is observed by the minimal formation of multinucleated cells (0.4%). Furthermore, the proportion of M2 macrophages, osteogenic differentiation, and angiogenic potential are consistently increased by the effects of magnesium from the nanoparticles. This orchestrated control of multiple systems influences the in vivo vascularized bone regeneration in which 80% of the critical-sized bone defect is regenerated with new bones with mature lamellar structure and arteriole-scale micro-vessels. Altogether, this study emphasizes the importance of the coordinated modulation of immune, osteogenic, and angiogenic systems at the bone defect site for robust bone regeneration.
Collapse
Affiliation(s)
- Hyewoo Jeong
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yujin Han
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Seung Jae Huh
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
14
|
Zhao Q, Leng C, Lau M, Choi K, Wang R, Zeng Y, Chen T, Zhang C, Li Z. Precise healing of oral and maxillofacial wounds: tissue engineering strategies and their associated mechanisms. Front Bioeng Biotechnol 2024; 12:1375784. [PMID: 38699431 PMCID: PMC11063293 DOI: 10.3389/fbioe.2024.1375784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Precise healing of wounds in the oral and maxillofacial regions is usually achieved by targeting the entire healing process. The rich blood circulation in the oral and maxillofacial regions promotes the rapid healing of wounds through the action of various growth factors. Correspondingly, their tissue engineering can aid in preventing wound infections, accelerate angiogenesis, and enhance the proliferation and migration of tissue cells during wound healing. Recent years, have witnessed an increase in the number of researchers focusing on tissue engineering, particularly for precise wound healing. In this context, hydrogels, which possess a soft viscoelastic nature and demonstrate exceptional biocompatibility and biodegradability, have emerged as the current research hotspot. Additionally, nanofibers, films, and foam sponges have been explored as some of the most viable materials for wound healing, with noted advantages and drawbacks. Accordingly, future research is highly likely to explore the application of these materials harboring enhanced mechanical properties, reduced susceptibility to external mechanical disturbances, and commendable water absorption and non-expansion attributes, for superior wound healing.
Collapse
Affiliation(s)
- Qingtong Zhao
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Stomatology, The Sixth Affiliated Hospital of Jinan University, Dongguan, China
| | - Changyun Leng
- School of stomatology, Jinan University, Guangzhou, China
| | - Manting Lau
- Department of Stomatology, Baoan Central Hospital of Shenzhen, Shenzhen, China
| | - Kawai Choi
- School of stomatology, Jinan University, Guangzhou, China
| | - Ruimin Wang
- School of stomatology, Jinan University, Guangzhou, China
| | - Yuyu Zeng
- School of stomatology, Jinan University, Guangzhou, China
| | - Taiying Chen
- School of stomatology, Jinan University, Guangzhou, China
| | - Canyu Zhang
- School of stomatology, Jinan University, Guangzhou, China
| | - Zejian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Li Y, Li X, Guo D, Meng L, Feng X, Zhang Y, Pan S. Immune dysregulation and macrophage polarization in peri-implantitis. Front Bioeng Biotechnol 2024; 12:1291880. [PMID: 38347915 PMCID: PMC10859439 DOI: 10.3389/fbioe.2024.1291880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
The term "peri-implantitis" (peri-implantitis) refers to an inflammatory lesion of the mucosa surrounding an endosseous implant and a progressive loss of the peri-implant bone that supports the implant. Recently, it has been suggested that the increased sensitivity of implants to infection and the quick elimination of supporting tissue after infection may be caused by a dysregulated peri-implant mucosal immune response. Macrophages are polarized in response to environmental signals and play multiple roles in peri-implantitis. In peri-implantitis lesion samples, recent investigations have discovered a considerable increase in M1 type macrophages, with M1 type macrophages contributing to the pro-inflammatory response brought on by bacteria, whereas M2 type macrophages contribute to inflammation remission and tissue repair. In an effort to better understand the pathogenesis of peri-implantitis and suggest potential immunomodulatory treatments for peri-implantitis in the direction of macrophage polarization patterns, this review summarizes the research findings related to macrophage polarization in peri-implantitis and compares them with periodontitis.
Collapse
Affiliation(s)
- Yue Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xue Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China
| | - Danni Guo
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Lingwei Meng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xianghui Feng
- Department of Periodontology, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yi Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shaoxia Pan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|