1
|
Wang B, Shen B, Xiang W, Shen H. Advances in the study of LNPs for mRNA delivery and clinical applications. Virus Genes 2024; 60:577-591. [PMID: 39172354 DOI: 10.1007/s11262-024-02102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Messenger ribonucleic acid (mRNA) was discovered in 1961 as an intermediary for transferring genetic information from DNA to ribosomes for protein synthesis. The COVID-19 pandemic brought worldwide attention to mRNA vaccines. The emergency use authorization of two COVID-19 mRNA vaccines, BNT162b2 and mRNA-1273, were major achievements in the history of vaccine development. Lipid nanoparticles (LNPs), one of the most superior non-viral delivery vectors available, have made many exciting advances in clinical translation as part of the COVID-19 vaccine and therefore has the potential to accelerate the clinical translation of many gene drugs. In addition, due to these small size, biocompatibility and excellent biodegradability, LNPs can efficiently deliver nucleic acids into cells, which is particularly important for current mRNA therapeutic regimens. LNPs are composed cationic or pH-dependent ionizable lipid bilayer, polyethylene glycol (PEG), phospholipids, and cholesterol, represents an advanced system for the delivery of mRNA vaccines. Furthermore, optimization of these four components constituting the LNPs have demonstrated enhanced vaccine efficacy and diminished adverse effects. The incorporation of biodegradable lipids enhance the biocompatibility of LNPs, thereby improving its potential as an efficacious therapeutic approach for a wide range of challenging and intricate diseases, encompassing infectious diseases, liver disorders, cancer, cardiovascular diseases, cerebrovascular conditions, among others. Consequently, this review aims to furnish the scientific community with the most up-to-date information regarding mRNA vaccines and LNP delivery systems.
Collapse
Affiliation(s)
- Bili Wang
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Biao Shen
- Hangzhou Cybernax Biotechnology Co. Ltd, Hangzhou, 311202, China
| | - Wenqing Xiang
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Hongqiang Shen
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
2
|
Liu X, Min Q, Li Y, Chen S. Enhanced Cellular Immunity for Hepatitis B Virus Vaccine: A Novel Polyinosinic-Polycytidylic Acid-Incorporated Adjuvant Leveraging Cytoplasmic Retinoic Acid-Inducible Gene-Like Receptor Activation and Increased Antigen Uptake. Biomater Res 2024; 28:0096. [PMID: 39469105 PMCID: PMC11513446 DOI: 10.34133/bmr.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Conventional aluminum adjuvants exhibit limited cellular immunity. Polyinosinic-polycytidylic acid (poly I:C) activates cytoplasmic retinoic acid-inducible gene-like receptor (RLR), triggering strong T cell activation and cellular responses. However, when applied as an adjuvant, its limited endocytosis and restricted cytoplasmic delivery diminish its effectiveness and increase its toxicity. Hybrid polymer-lipid nanoparticle (PLNP) possesses numerous benefits such as good stability, reduced drug leakage, simple fabrication, easy property modulation, and excellent reproducibility compared to the lipid nanoparticle or the polymeric vector. Here, we developed a novel cationic polymer-lipid hybrid adjuvant capable of incorporating poly I:C to enhance cellular immunity. The hepatitis B surface antigen (HBsAg) was immobilized onto poly I:C-incorprated PLNP (PPLNP) via electrostatic interactions, forming the HBsAg/PPLNP vaccine formulation. The PPLNP adjuvant largely enhanced the cellular endocytosis and cytoplasmic transport of poly I:C, activating RLR followed by promoting type I interferon (IFN) secretion. Meanwhile, PPLNP obviously enhanced the antigen uptake, prolonged antigen retention at the site of administration, and facilitated enhanced transport of antigens to lymph nodes. The HBsAg/PPLNP nanovaccine led to amplified concentrations of antigen-specific immunoglobulin G (IgG), IFN-γ, granzyme B, and an enhanced IgG2a/IgG1 ratio, alongside the FasL+/CD8+ T cell activation, favoring a T helper 1 (TH1)-driven immune response. PPLNP, distinguished by its biocompatibility, ease of fabrication, and effectiveness in augmenting cellular immunity, holds significant promise as a new adjuvant.
Collapse
Affiliation(s)
- Xuhan Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Qiuxia Min
- Department of Pharmacy, First People’s Hospital of Yunnan Province,
Kunming University of Science and Technology, Kunming, 650034 Yunnan, China
| | - Yihui Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816 China
| |
Collapse
|
3
|
Li X, Wu C, Li J, Yu J, Yang X, Yu L, Wang C, Kuai R. An immunostimulatory liponanogel reveals immune activation-enhanced drug delivery and therapeutic efficacy in cancer. J Control Release 2024; 376:167-183. [PMID: 39384154 DOI: 10.1016/j.jconrel.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The clinical use of immunostimulatory polyinosinic:polycytidylic acid (pIC) for cancer therapy has been notably limited by its low tumor accumulation and poor cytosolic delivery to activate innate immune sensors. Here, we report a liponanogel (LNG)-based platform to address these challenges. The immunostimulatory LNG consists of an ionizable lipid shell coating a nanogel made of hyaluronic acid (HA), Mn2+ and pIC, which is denoted as LNG-Mn-pIC (LMP). The protonation of internal HA within acidic endosomes increases the endosomal membrane permeability and facilitates the cytosolic delivery of pIC. Moreover, Mn2+, previously reported to activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, synergizes with pIC to activate innate immune cells. Remarkably, intravenously injected LMP significantly induces tumor vasculature disruption and tumor cell apoptosis in an innate immune activation-dependent manner, facilitating the LMP delivery into tumors and leading to enhanced antitumor immunity that potently inhibits or even completely regresses the established tumors. In summary, this immunostimulatory LNG platform not only serves as a useful tool to uncover the immune activation-enhanced drug delivery profile but also represents a broadly applicable platform for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chengcheng Wu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Junyao Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jinchao Yu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiuxiu Yang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Lvshan Yu
- School of Basic Medical Sciences, Tsinghua University, Beijing 10084, China; Peking University-Tsinghua University-National Institute Biological Science Joint Graduate Program, Beijing 100084, China
| | - Chaoyu Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
4
|
Li J, Foged C. Evaluating the breadth of nucleic acid-based payloads delivered in lipid nanoparticles to establish fundamental differences in development. Expert Opin Drug Deliv 2024; 21:1441-1461. [PMID: 39387233 DOI: 10.1080/17425247.2024.2409142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Nucleic acid (NA)-based therapeutics have shown great potential for downregulating or augmenting gene expression, and for promising applications, e.g., protein-replacement therapy and vaccination, a comprehensive understanding of the requirements for their targeted delivery to specific tissues or cells is needed. AREAS COVERED In this review, we discuss clinical applications of four representative types of NA-based therapeutics, i.e. antisense oligonucleotides, small interfering RNA, messenger RNA, and circular RNA, with a focus on the lipid nanoparticle (LNP) technology used for intracellular delivery. The in vivo fate of LNPs is discussed to improve the understanding of trafficking of nanomedicines at the systemic and cellular levels. In addition, NA-based vaccines are discussed, focusing on targeting antigen-presenting cells and immune activation. EXPERT OPINION Optimization of delivery systems for NA-based therapeutics is mainly focused on the standard requirements of prolonged systemic circulation and enhancing endosomal escape. Depending on the final destination in specific target tissues or cells, strategies should be adjusted to achieve the desired biodistribution of NA-based payloads. More studies relating to the pharmacokinetics of both cargo and carrier are encouraged, because their in vivo fates may differ, considering the possibility of premature cargo release before reaching the target.
Collapse
Affiliation(s)
- Jinjin Li
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| |
Collapse
|
5
|
Wang J, Guo B, Sun Z, Zhao S, Cao L, Zhong Z, Meng F. Polymersomal Poly(I:C) Self-Magnifies Antitumor Immunity by Inducing Immunogenic Cell Death and Systemic Immune Activation. Adv Healthc Mater 2024; 13:e2400784. [PMID: 38896790 DOI: 10.1002/adhm.202400784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Immunotherapy has emerged as a powerful weapon against lung cancer, yet only a fraction of patients respond to the treatment. Poly(I:C) (PIC) effectively triggers both innate and adaptive immunity. It can also induce immunogenic cell death (ICD) in tumor cells. However, its efficacy is hindered by its instability in vivo and limited cellular uptake. To address this, PIC is encapsulated in cRGD-functionalized polymersomes (t-PPIC), which significantly increases its stability and uptake, thus activating dendritic cells (DCs) and inducing apoptosis of lung tumor cells in vitro. In a murine LLC lung tumor model, systemic administration of t-PPIC effectively suppresses tumor growth and leads to survival benefits, with 40% of the mice becoming tumor-free. Notably, t-PPIC provokes stronger apoptosis and ICD in tumor tissue and elicits a more potent stimulation of DCs, recruitment of natural killer (NK) cells, and activation of CD8+ T cells, compared to free PIC and nontargeted PPIC controls. Furthermore, when combined with immune checkpoint inhibitors or radiotherapy, t-PPIC amplifies the antitumor immune response, resulting in complete regression in 60% of the mice. These compelling findings underscore the potential of integrin-targeted polymersomal PIC to enhance antitumor immunity by simultaneously inducing ICD and systemic immune activation.
Collapse
Affiliation(s)
- Jingyi Wang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215006, P. R. China
| | - Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215006, P. R. China
| | - Zhiwei Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215006, P. R. China
| | - Songsong Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215006, P. R. China
| | - Li Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215006, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, P. R. China
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, 215006, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
6
|
Yao Z, Liang Z, Li M, Wang H, Ma Y, Guo Y, Chen C, Xue C, Sun B. Aluminum oxyhydroxide-Poly(I:C) combination adjuvant with balanced immunostimulatory potentials for prophylactic vaccines. J Control Release 2024; 372:482-493. [PMID: 38914205 DOI: 10.1016/j.jconrel.2024.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
The development of high-purity antigens promotes the urgent need of novel adjuvant with the capability to trigger high levels of immune response. Polyinosinic-polycytidylic (Poly(I:C)) is a synthetic double-stranded RNA (dsRNA) that can engage Toll-like receptor 3 (TLR3) to initiate immune responses. However, the Poly(I:C)-induced toxicity and inefficient delivery prevent its applications. In our study, combination adjuvants are formulated by aluminum oxyhydroxide nanorods (AlOOH NRs) and Poly(I:C), named Al-Poly(I:C), and the covalent interaction between the two components is further demonstrated. Al-Poly(I:C) mediates enhanced humoral and cellular immune responses in three antigen models, i.e., HBsAg virus-like particles (VLPs), human papilloma virus (HPV) VLPs and varicella-zoster virus (VZV) glycoprotein E (gE). Further mechanistic studies demonstrate that the dose and molecular weight (MW) of Poly(I:C) determine the physicochemical properties and adjuvanticity of the Al-Poly(I:C) combination adjuvants. Al-Poly(I:C) with higher Poly(I:C) dose promotes antigen-bearing dendritic cells (DCs) recruitment and B cells proliferation in lymph nodes. Al-Poly(I:C) formulated with higher MW Poly(I:C) induces higher activation of helper T cells, B cells, and CTLs. This study demonstrates that Al-Poly(I:C) potentiates the humoral and cellular responses in vaccine formulations. It offers insights for adjuvant design to meet the formulation requirements in both prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Zhiying Yao
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Zhihui Liang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Min Li
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Huiyang Wang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yubin Ma
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yiyang Guo
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Bingbing Sun
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| |
Collapse
|
7
|
Jangra S, Lamoot A, Singh G, Laghlali G, Chen Y, Ye T, García-Sastre A, De Geest BG, Schotsaert M. Lipid nanoparticle composition for adjuvant formulation modulates disease after influenza virus infection in quadrivalent influenza vaccine vaccinated mice. Front Immunol 2024; 15:1370564. [PMID: 38711520 PMCID: PMC11070541 DOI: 10.3389/fimmu.2024.1370564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
There are considerable avenues through which currently licensed influenza vaccines could be optimized. We tested influenza vaccination in a mouse model with two adjuvants: Sendai virus-derived defective interfering (SDI) RNA, a RIG-I agonist; and an amphiphilic imidazoquinoline (IMDQ-PEG-Chol), a TLR7/8 agonist. The negatively charged SDI RNA was formulated into lipid nanoparticles (LNPs) facilitating direct delivery of SDI RNA to the cytosol, where RIG-I sensing induces inflammatory and type I interferon responses. We previously tested SDI RNA and IMDQ-PEG-Chol as standalone and combination adjuvants for influenza and SARS-CoV-2 vaccines. Here, we tested two different ionizable lipids, K-Ac7-Dsa and S-Ac7-Dog, for LNP formulations. The LNPs were incorporated with SDI RNA to determine its potential as a combination adjuvant with IMDQ-PEG-Chol by evaluating the host immune response to vaccination and infection in immunized BALB/c mice. Adjuvanticity of IMDQ-PEG-Chol with and without empty or SDI-loaded LNPs was validated with quadrivalent inactivated influenza vaccine (QIV), showing robust induction of antibody titers and T-cell responses. Depending on the adjuvant combination and LNP formulation, humoral and cellular vaccine responses could be tailored towards type 1 or type 2 host responses with specific cytokine profiles that correlated with the protective responses to viral infection. The extent of protection conferred by different vaccine/LNP/adjuvant combinations was tested by challenging mice with a vaccine-matched strain of influenza A virus A/Singapore/gp1908/2015 IVR-180 (H1N1). Groups that received either LNP formulated with SDI or IMDQ-PEG-Chol, or both, showed very low levels of viral replication in their lungs at 5 days post-infection (DPI). These studies provide evidence that the combination of vaccines with LNPs and/or adjuvants promote antigen-specific cellular responses that can contribute to protection upon infection. Interestingly, we observed differences in humoral and cellular responses to vaccination between different groups receiving K-Ac7-Dsa or S-Ac7-Dog lipids in LNP formulations. The differences were also reflected in inflammatory responses in lungs of vaccinated animals to infection, depending on LNP formulations. Therefore, this study suggests that the composition of the LNPs, particularly the ionizable lipid, plays an important role in inducing inflammatory responses in vivo, which is important for vaccine safety and to prevent adverse effects upon viral exposure.
Collapse
Affiliation(s)
- Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Tingting Ye
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
8
|
Jangra S, Lamoot A, Singh G, Laghlali G, Chen Y, Yz T, García-Sastre A, De Geest BG, Schotsaert M. Lipid nanoparticle composition for adjuvant formulation modulates disease after influenza virus infection in QIV vaccinated mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.575599. [PMID: 38293047 PMCID: PMC10827098 DOI: 10.1101/2024.01.14.575599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Adjuvants can enhance vaccine effectiveness of currently licensed influenza vaccines. We tested influenza vaccination in a mouse model with two adjuvants: Sendai virus derived defective interfering (SDI) RNA, a RIG-I agonist, and an amphiphilic imidazoquinoline (IMDQ-PEG-Chol), TLR7/8 adjuvant. The negatively charged SDI RNA was formulated into lipid nanoparticles (LNPs) facilitating the direct delivery of a RIG-I agonist to the cytosol. We have previously tested SDI and IMDQ-PEG-Chol as standalone and combination adjuvants for influenza and SARS-CoV-2 vaccines. Here we tested two different ionizable lipids, K-Ac7-Dsa and S-Ac7-Dog, for LNP formulations. The adjuvanticity of IMDQ-PEG-Chol with and without empty or SDI-loaded LNPs was validated in a licensed vaccine setting (quadrivalent influenza vaccine or QIV) against H1N1 influenza virus, showing robust induction of antibody titres and T cell responses. Depending on the adjuvant combination and LNP lipid composition (K-Ac7-Dsa or S-Ac7-Dog lipids), humoral and cellular vaccine responses could be tailored towards type 1 or type 2 host responses with specific cytokine profiles that correlated with protection during viral infection. The extent of protection conferred by different vaccine/LNP/adjuvant combinations was examined against challenge with the vaccine-matching strain of H1N1 influenza A virus. Groups that received either LNP formulated with SDI, IMDQ-PEG-Chol or both showed very low levels of viral replication in their lungs at five days post virus infection. LNP ionizable lipid composition as well as loading (empty versus SDI) also skewed host responses to infection, as reflected in the cytokine and chemokine levels in lungs of vaccinated animals upon infection. These studies show the potential of LNPs as adjuvant delivery vehicles for licensed vaccines and illustrate the importance of LNP composition for subsequent host responses to infection, an important point of consideration for vaccine safety.
Collapse
Affiliation(s)
- Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of Pharmaceutics, Ghent University, Ghent Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent Belgium
| | - Tingting Yz
- Department of Pharmaceutics, Ghent University, Ghent Belgium
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | | | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|