1
|
Cheng D, Luo L, Zhang Q, Song Z, Zhan Y, Tu W, Li J, Ma Q, Zeng X. Ca 2+- and cGAMP-Contained Semiconducting Polymer Nanomessengers for Radiodynamic-Activated Calcium Overload and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411739. [PMID: 39679909 PMCID: PMC11809400 DOI: 10.1002/advs.202411739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/01/2024] [Indexed: 12/17/2024]
Abstract
Various second messengers exert some vital actions in biological systems, including cancer therapy, but the therapeutic efficacy is often need to be improved. A semiconducting polymer nanomessenger (TCa/SPN/a) consisting of two second messengers, calcium ion (Ca2+) and cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) for metastatic breast cancer therapy, is reported here. Such a TCa/SPN/a is constructed to exhibit X-ray response for the activatable delivery of mitochondria-targeting Ca compound and cGAMP as stimulator of interferon genes (STING) agonist. With X-ray irradiation, TCa/SPN/a could generate singlet oxygen (1O2) via radiodynamic effect for ablating solid tumors and improving the tumor immunogenicity by inducing immunogenic cell death (ICD). Furthermore, the released mitochondria-targeting Ca compounds show a high binging effect on mitochondria and cause reactive oxygen species (ROS) generation and mitochondria damage via calcium overload, while cGAMP boosts immunological effect through activating STING pathway. In this way, TCa/SPN/a enables a radiodynamic-activated calcium overload and immunotherapy to obviously inhibit the growths of bilateral tumors and also abolish tumor metastasis in metastatic breast cancer mouse models. This article should demonstrate the first smart dual-functional nanotherapeutic containing two second messengers for precise and specific cancer therapy.
Collapse
Affiliation(s)
- Danling Cheng
- Institute of ImmunologyZhejiang University School of MedicineHangzhou310009China
| | - Libai Luo
- Oncology Chemotherapy DepartmentAffiliated Hospital of Youjiang Medical University for Nationalities and Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education InstitutionsBaise533000China
| | - Qin Zhang
- Institute of Translational MedicineShanghai UniversityShanghai200444China
| | - Zheming Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Yiduo Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Wenzhi Tu
- Department of Radiation OncologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Qiming Ma
- Department of General SurgeryThe First Affiliated Hospital of Gannan Medical UniversityGanzhou341000China
| | - Xianchang Zeng
- Institute of ImmunologyZhejiang University School of MedicineHangzhou310009China
| |
Collapse
|
2
|
Wang Y, Ma K, Kang M, Yan D, Niu N, Yan S, Sun P, Zhang L, Sun L, Wang D, Tan H, Tang BZ. A new era of cancer phototherapy: mechanisms and applications. Chem Soc Rev 2024; 53:12014-12042. [PMID: 39494674 DOI: 10.1039/d4cs00708e] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The past decades have witnessed great strides in phototherapy as an experimental option or regulation-approved treatment in numerous cancer indications. Of particular interest is nanoscale photosensitizer-based phototherapy, which has been established as a prominent candidate for advanced tumor treatment by virtue of its high efficacy and safety. Despite considerable research progress on materials, methods and devices in nanoscale photosensitizing agent-based phototherapy, their mechanisms of action are not always clear, which impedes their practical application in cancer treatment. Hence, from a new perspective, this review elaborates the working mechanisms, involving impairment and moderation effects, of diverse phototherapies on cells, organelles, organs, and tissues. Furthermore, the most current available phototherapy modalities are categorized as photodynamic, photothermal, photo-immune, photo-gas, and radio therapies in this review. A comprehensive understanding of the inferiority and superiority of various phototherapies will facilitate the advent of a new era of cancer phototherapy.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ke Ma
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Dingyuan Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Niu Niu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Saisai Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Panpan Sun
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Lijie Sun
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|