1
|
Huang J, Zhang Y, Ou L, Mou J. Phosphorus and Nitrogen Dual-Doped Hollow Porous Carbon Spheres toward Enhanced Cycling Stability of Room-Temperature Na-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57064-57073. [PMID: 39380293 DOI: 10.1021/acsami.4c11488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Development of room-temperature sodium-sulfur (RT Na-S) batteries with satisfactory cycling life and rate capability remains challenging due to the unfavorable electric conductivity from S species, sluggish redox kinetics of S conversion, and serious shuttle effects of sodium polysulfides (NaPSs). To address these issues, a phosphorus and nitrogen dual-doped hollow porous carbon sphere (PN-HPCs) is synthesized as the S hosts, which enhances the electric conductivity, ion diffusion, and conversion of polysulfides. Such a hollow hierarchically porous structure is beneficial to accommodate the volume variations of S species and shorten the ion/electron transfer distances during electrochemical reaction process. As a result, the S@PN-HPCs600 cathode delivers noticeable cycling performance (313 mAh g-1 after 4500 cycles at 5.0 C, and capacity degeneration of only 0.01% per cycle) and rate capability (646.4 mAh g-1@1.0 and 527.5 mAh g-1@3.0 C). This work presents an efficient strategy based on structural confinement and dual-heteroatom doping engineering for long-life RT Na-S batteries.
Collapse
Affiliation(s)
- Jianlin Huang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yao Zhang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Liqi Ou
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jirong Mou
- School of Physics and Electronics, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
2
|
Wu H, Xia G, Yu X. Unlocking the Potential of Iron Sulfides for Sodium-Ion Batteries by Ultrafine Pulverization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312190. [PMID: 38511576 DOI: 10.1002/smll.202312190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Indexed: 03/22/2024]
Abstract
Iron sulfides have attracted tremendous research interest for the anode of sodium-ion batteries due to their high capacity and abundant resource. However, the intrinsic pulverization and aggregation of iron sulfide electrodes induced by the conversion reaction during cycling are considered destructive and undesirable, which often impedes their capacity, rate capability, and long-term cycling stability. Herein, an interesting pulverization phenomenon of ultrathin carbon-coated Fe1- xS nanoplates (Fe1- xS@C) is observed during the first discharge process of sodium-ion batteries, which leads to the formation of Fe1- xS nanoparticles with quantum size (≈5 nm) tightly embedded in the carbon matrix. Surprisingly, no discernible aggregation phenomenon can be detected in subsequent cycles. In/ex situ experiments and theoretical calculations demonstrate that ultrafine pulverization can confer several advantages, including sustaining reversible conversion reactions, reducing the adsorption energies, and diffusion energy barriers of sodium atoms, and preventing the aggregation of Fe1- xS particles by strengthening the adsorption between pulverized Fe1- xS nanoparticles and carbon. As a result, benefiting from the unique ultrafine pulverization, the Fe1- xS@C anode simultaneously exhibits high reversible capacity (610 mAh g-1 at 0.5 A g-1), superior rate capability (427.9 mAh g-1 at 20 A g-1), and ultralong cycling stability (377.9 mAh g-1 after 2500 cycles at 20 A g-1).
Collapse
Affiliation(s)
- Hui Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Guanglin Xia
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
3
|
Yang Y, Yang S, Xue X, Zhang X, Li Q, Yao Y, Rui X, Pan H, Yu Y. Inorganic All-Solid-State Sodium Batteries: Electrolyte Designing and Interface Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308332. [PMID: 37730213 DOI: 10.1002/adma.202308332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Inorganic all-solid-state sodium batteries (IASSSBs) are emerged as promising candidates to replace commercial lithium-ion batteries in large-scale energy storage systems due to their potential advantages, such as abundant raw materials, robust safety, low price, high-energy density, favorable reliability and stability. Inorganic sodium solid electrolytes (ISSEs) are an indispensable component of IASSSBs, gaining significant attention. Herein, this review begins by discussing the fundamentals of ISSEs, including their ionic conductivity, mechanical property, chemical and electrochemical stabilities. It then presents the crystal structures of advanced ISSEs (e.g., β/β''-alumina, NASICON, sulfides, complex hydride and halide electrolytes) and the related issues, along with corresponding modification strategies. The review also outlines effective approaches for forming intimate interfaces between ISSEs and working electrodes. Finally, current challenges and critical perspectives for the potential developments and possible directions to improve interfacial contacts for future practical applications of ISSEs are highlighted. This comprehensive review aims to advance the understanding and development of next-generation rechargeable IASSSBs.
Collapse
Affiliation(s)
- Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Shoumeng Yang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xu Xue
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Xianghua Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qifei Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Chen Z, Yu Z, Wang L, Huang Y, Huang H, Xia Y, Zeng S, Xu R, Yang Y, He S, Pan H, Wu X, Rui X, Yang H, Yu Y. Oxygen Defect Engineering toward Zero-Strain V 2O 2.8@Porous Reticular Carbon for Ultrastable Potassium Storage. ACS NANO 2023; 17:16478-16490. [PMID: 37589462 DOI: 10.1021/acsnano.3c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Potassium-ion batteries (KIBs) are promising candidates for large-scale energy storage devices due to their high energy density and low cost. However, the large potassium-ion radius leads to its sluggish diffusion kinetics during intercalation into the lattice of the electrode material, resulting in electrode pulverization and poor cycle stability. Herein, vanadium trioxide anodes with different oxygen vacancy concentrations (V2O2.9, V2O2.8, and V2O2.7 determined by the neutron diffraction) are developed for KIBs. The V2O2.8 anode is optimal and exhibits excellent potassium storage performance due to the realization of expanded interlayer spacing and efficient ion/electron transport. In situ X-ray diffraction indicates that V2O2.8 is a zero-strain anode with a volumetric strain of 0.28% during the charge/discharge process. Density functional theory calculations show that the impacts of oxygen defects are embodied in reducing the band gap, increasing electron transfer ability, and lowering the diffusion energy barriers for potassium ions. As a result, the electrode of nanosized V2O2.8 embedded in porous reticular carbon (V2O2.8@PRC) delivers high reversible capacity (362 mAh g-1 at 0.05 A g-1), ultralong cycling stability (98.8% capacity retention after 3000 cycles at 2 A g-1), and superior pouch-type full-cell performance (221 mAh g-1 at 0.05 A g-1). This work presents an oxygen defect engineering strategy for ultrastable KIBs.
Collapse
Affiliation(s)
- Zhihao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zuxi Yu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lifeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yingshan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijuan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuanhua Xia
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, China
| | - Sifan Zeng
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, China
| | - Rui Xu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hai Yang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Lv X, Tang F, Xu S, Yao Y, Yuan Z, Liu L, He S, Yang Y, Sun W, Pan H, Rui X, Yu Y. Construction of Inorganic/Organic Hybrid Layer for Stable Na Metal Anode Operated under Wide Temperatures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300215. [PMID: 37058082 DOI: 10.1002/smll.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Sodium metal battery is supposed to be a propitious technology for high-energy storage application owing to the advantages of natural abundance and low cost. Unfortunately, the uncontrollable dendrite growth critically hampers its practical implementation. Herein, an inorganic/organic hybrid layer of NaF/CF/CC on the surface of Na foil (IOHL-Na) is designed and synthesized through the in situ reaction of polyvinylidene fluoride (PVDF) and metallic sodium. This protective layer possesses satisfactory Young's modulus, good kinetic property, and sodiophilicity, which can distinctly stabilize Na metal anode. As a result, the symmetric IOHL-Na cell achieves a lifespan of 770 h at 1 mAh cm-2 /1 mA cm-2 in carbonate electrolyte. The assembled full battery of IOHL-Na||Na3 V2 (PO4 )3 delivers a high discharge capacity of 85 mAh g-1 at 10 C after 600 cycles under ambient temperature. Furthermore, the IOHL-Na||Na3 V2 (PO4 )3 cell still can steadily operate at 10 C for 600 cycles at 55 °C. And when testing at an ultralow temperature of -40 °C, the full cell achieves 40 mAh g-1 at 0.5 C with a prolonged lifespan of 450 cycles. This work offers a new approach to protect the metal sodium anode without dendrite growth under wide temperatures.
Collapse
Affiliation(s)
- Xiang Lv
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Fang Tang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shitan Xu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, National Synchrotron Radiation Laboratory, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zishun Yuan
- School of Fashion Design and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Lin Liu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xianhong Rui
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, National Synchrotron Radiation Laboratory, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
6
|
Wang Y, Wang P, Yuan J, Song N, An X, Ma X, Feng J, Xi B, Xiong S. Binary Sulfiphilic Nickel Boride on Boron-Doped Graphene with Beneficial Interfacial Charge for Accelerated Li-S Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208281. [PMID: 37026655 DOI: 10.1002/smll.202208281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The "shuttle effect" and slow conversion kinetics of lithium polysulfides (LiPSs) are stumbling block for high-energy-density lithium-sulfur batteries (LSBs), which can be effectively evaded by advanced catalytic materials. Transition metal borides possess binary LiPSs interactions sites, aggrandizing the density of chemical anchoring sites. Herein, a novel core-shelled heterostructure consisting of nickel boride nanoparticles on boron-doped graphene (Ni3 B/BG), is synthesized through a graphene spontaneously couple derived spatially confined strategy. The integration of Li2 S precipitation/dissociation experiments and density functional theory computations demonstrate that the favorable interfacial charge state between Ni3 B and BG provides smooth electron/charge transport channel, which promotes the charge transfer between Li2 S4 -Ni3 B/BG and Li2 S-Ni3 B/BG systems. Benefitting from these, the facilitated solid-liquid conversion kinetics of LiPSs and reduced energy barrier of Li2 S decomposition are achieved. Consequently, the LSBs employed the Ni3 B/BG modified PP separator deliver conspicuously improved electrochemical performances with excellent cycling stability (decay of 0.07% per cycle for 600 cycles at 2 C) and remarkable rate capability of 650 mAh g-1 at 10 C. This study provides a facile strategy for transition metal borides and reveals the effect of heterostructure on catalytic and adsorption activity for LiPSs, offering a new viewpoint to apply boride in LSBs.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jia Yuan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Ning Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xuguang An
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| | - Xiaojian Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jinkui Feng
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
7
|
Xia X, Xu S, Tang F, Yao Y, Wang L, Liu L, He S, Yang Y, Sun W, Xu C, Feng Y, Pan H, Rui X, Yu Y. A Multifunctional Interphase Layer Enabling Superior Sodium-Metal Batteries under Ambient Temperature and -40 °C. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209511. [PMID: 36576022 DOI: 10.1002/adma.202209511] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The sodium (Na)-metal anode with high theoretical capacity and low cost is promising for construction of high-energy-density metal batteries. However, the unsatisfactory interface between Na and the liquid electrolyte induces tardy ion transfer kinetics and dendritic Na growth, especially at ultralow temperature (-40 °C). Herein, an artificial heterogeneous interphase consisting of disodium selenide (Na2 Se) and metal vanadium (V) is produced on the surface of Na (Na@Na2 Se/V) via an in situ spontaneous chemical reaction. Such interphase layer possesses high sodiophilicity, excellent ionic conductivity, and high Young's modulus, which can promote Na-ion adsorption and transport, realizing homogenous Na deposition without dendrites. The symmetric Na@Na2 Se/V cell exhibits outstanding cycling life span of over 1790 h (0.5 mA cm-2 /1 mAh cm-2 ) in carbonate-based electrolyte. More remarkably, ab initio molecular dynamics simulations reveal that the artificial Na2 Se/V hybrid interphase can accelerate the desolvation of solvated Na+ at -40 °C. The Na@Na2 Se/V electrode thus exhibits exceptional electrochemical performance in symmetric cell (over 1500 h at 0.5 mA cm-2 /0.5 mAh cm-2 ) and full cell (over 700 cycles at 0.5 C) at -40 °C. This work provides an avenue to design artificial heterogeneous interphase layers for superior high-energy-density metal batteries at ambient and ultralow temperatures.
Collapse
Affiliation(s)
- Xianming Xia
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shitan Xu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Fang Tang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lifeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lin Liu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chen Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xianhong Rui
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
8
|
Wang L, Ren N, Yao Y, Yang H, Jiang W, He Z, Jiang Y, Jiao S, Song L, Wu X, Wu ZS, Yu Y. Designing Solid Electrolyte Interfaces towards Homogeneous Na Deposition: Theoretical Guidelines for Electrolyte Additives and Superior High-Rate Cycling Stability. Angew Chem Int Ed Engl 2023; 62:e202214372. [PMID: 36480194 DOI: 10.1002/anie.202214372] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Metallic Na is a promising metal anode for large-scale energy storage. Nevertheless, unstable solid electrolyte interphase (SEI) and uncontrollable Na dendrite growth lead to disastrous short circuit and poor cycle life. Through phase field and ab initio molecular dynamics simulation, we first predict that the sodium bromide (NaBr) with the lowest Na ion diffusion energy barrier among sodium halogen compounds (NaX, X=F, Cl, Br, I) is the ideal SEI composition to induce the spherical Na deposition for suppressing dendrite growth. Then, 1,2-dibromobenzene (1,2-DBB) additive is introduced into the common fluoroethylene carbonate-based carbonate electrolyte (the corresponding SEI has high mechanical stability) to construct a desirable NaBr-rich stable SEI layer. When the Na||Na3 V2 (PO4 )3 cell utilizes the electrolyte with 1,2-DBB additive, an extraordinary capacity retention of 94 % is achieved after 2000 cycles at a high rate of 10 C. This study provides a design philosophy for dendrite-free Na metal anode and can be expanded to other metal anodes.
Collapse
Affiliation(s)
- Lifeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Naiqing Ren
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hai Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Jiang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zixu He
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yang Jiang
- Jiujiang DeFu Technology Co. Ltd, Jiujiang, Jiangxi, 332000, China
| | - Shuhong Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
9
|
Jiang Y, Yu Z, Zhou X, Cheng X, Huang H, Liu F, Yang Y, He S, Pan H, Yang H, Yao Y, Rui X, Yu Y. Single-Atom Vanadium Catalyst Boosting Reaction Kinetics of Polysulfides in Na-S Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208873. [PMID: 36366906 DOI: 10.1002/adma.202208873] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The practical application of the room-temperature sodium-sulfur (RT Na-S) batteries is hindered by the insulated sulfur, the severe shuttle effect of sodium polysulfides, and insufficient polysulfide conversion. Herein, on the basis of first principles calculations, single-atom vanadium anchored on a 3D nitrogen-doped hierarchical porous carbon matrix (denoted as 3D-PNCV) is designed and fabricated to enhance sulfur reactivity, and adsorption and catalytic conversion performance of sodium polysulfide. The 3D-PNCV host with abundant and active V sites, hierarchical porous structure, high electrical conductivity, and strong chemical adsorption/conversion ability of V-N bonding can immobilize the polysulfides and promote reversibly catalytic conversion of polysulfides toward Na2 S. Therefore, as-fabricated RT Na-S batteries can achieve a high reversible capacity (445 mAh g-1 over 800 cycles at 5 A g-1 ) and excellent rate capability (224 mAh g-1 at 10 A g-1 ). The electrocatalysis mechanism of sodium polysulfides is further experimentally and theoretically revealed, which provides a new strategy to develop the highly stable RT Na-S batteries.
Collapse
Affiliation(s)
- Yu Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Zuxi Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - XueFeng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaolong Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Huijuan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fanfan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hai Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xianhong Rui
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui, 230026, China
| |
Collapse
|
10
|
Li D, Sun Y, Li M, Cheng X, Yao Y, Huang F, Jiao S, Gu M, Rui X, Ali Z, Ma C, Wu ZS, Yu Y. Rational Design of an Artificial SEI: Alloy/Solid Electrolyte Hybrid Layer for a Highly Reversible Na and K Metal Anode. ACS NANO 2022; 16:16966-16975. [PMID: 36222559 DOI: 10.1021/acsnano.2c07049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The practical application of a Na/K-metallic anode is intrinsically hindered by the poor cycle life and safety issues due to the unstable electrode/electrolyte interface and uncontrolled dendrite growth during cycling. Herein, we solve these issues through an in situ reaction of an oxyhalogenide (BiOCl) and Na to construct an artificial solid electrolyte interphase (SEI) layer consisting of an alloy (Na3Bi) and a solid electrolyte (Na3OCl) on the surface of the Na anode. As demonstrated by theoretical and experimental results, such an artificial SEI layer combines the synergistic properties of high ionic conductivity, electronic insulation, and interfacial stability, leading to uniform dendrite-free Na deposition beneath the hybrid SEI layer. The protected Na anode presents a low voltage polarization of 30 mV, achieving an extended cycling life of 700 h at 1 mA cm-2 in the carbonate-based electrolyte. The full cell based on the Na3V2(PO4)3 cathode and hybrid SEI-protected Na anode shows long-term stability. When this strategy is applied to a K metal anode, the protected K anode also reaches a cycling life of over 4000 h at 0.5 mA cm-2 with a low voltage polarization of 100 mV. Our work provides an important insight into the design principles of a stable artificial SEI layer for high-energy-density metal batteries.
Collapse
Affiliation(s)
- Dongjun Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei230026, Anhui, People's Republic of China
| | - Yingjie Sun
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang050018, Hebei, People's Republic of China
| | - Menghao Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, Guangdong, People's Republic of China
| | - Xiaolong Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei230026, Anhui, People's Republic of China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei230026, Anhui, People's Republic of China
| | - Fanyang Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei230026, Anhui, People's Republic of China
| | - Shuhong Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei230026, Anhui, People's Republic of China
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, Guangdong, People's Republic of China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Zeeshan Ali
- School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12, Islamabad, 44000Pakistan
| | - Cheng Ma
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei230026, Anhui, People's Republic of China
- National Synchrotron Radiation Laboratory, Hefei230026, Anhui, People's Republic of China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, Liaoning, People's Republic of China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei230026, Anhui, People's Republic of China
- National Synchrotron Radiation Laboratory, Hefei230026, Anhui, People's Republic of China
| |
Collapse
|
11
|
Huang XL, Zhang X, Yi M, Wang Y, Zhang S, Chong S, Liu HK, Dou SX, Wang Z. Trimodal hierarchical porous carbon nanorods enable high-performance Na-Se batteries. Chem Sci 2022; 13:11585-11593. [PMID: 36320390 PMCID: PMC9555568 DOI: 10.1039/d2sc04648b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Technical bottlenecks of polyselenide shuttling and material volume variation significantly hamper the development of emerging sodium-selenium (Na-Se) batteries. The nanopore structure of substrate materials is demonstrated to play a vital role in stabilizing Se cathodes and approaching superior Na-ion storage properties. Herein, an ideal nanorod-like trimodal hierarchical porous carbon (THPC) host is fabricated through a facile one-step carbonization method for advanced Na-Se batteries. The THPC possesses a trimodal nanopore structure encompassing micropores, mesopores, and macropores, and functions as a good accommodator of Se molecules, a reservoir of polyselenide intermediates, a buffer for volume expansion of Se species during sodiation, and a promoter for electron/ion transfer in the electrochemical process. As a result, Na-Se batteries assembled with the Se-THPC composite cathode realize high utilization of Se, fast redox kinetics, and excellent cyclability. Furthermore, the Na-ion storage mechanism of the well-designed Se-THPC composite is profoundly revealed by in situ visual characterization techniques.
Collapse
Affiliation(s)
- Xiang Long Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China 610054 China
| | - Xiaofeng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China 610054 China
| | - Mingjie Yi
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology Shenzhen 518055 China
| | - Ye Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China 610054 China
| | - Shaohui Zhang
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronic Engineering, College of Mechatronics and Control Engineering, Shenzhen University Shenzhen 518060 China
| | - Shaokun Chong
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics, Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University Xi'an 710072 China
| | - Hua Kun Liu
- Institute for Superconducting and Electronic Materials, University of Wollongong North Wollongong 2500 Australia
- Institute of Energy Materials Science, University of Shanghai for Science and Technology 516 Jungong Road Shanghai 200093 China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, University of Wollongong North Wollongong 2500 Australia
- Institute of Energy Materials Science, University of Shanghai for Science and Technology 516 Jungong Road Shanghai 200093 China
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China 610054 China
- Institute for Advanced Study, Chengdu University Chengdu 610106 P. R. China
| |
Collapse
|
12
|
Xia X, Lv X, Yao Y, Chen D, Tang F, Liu L, Feng Y, Rui X, Yu Y. A sodiophilic VN interlayer stabilizing a Na metal anode. NANOSCALE HORIZONS 2022; 7:899-907. [PMID: 35678312 DOI: 10.1039/d2nh00152g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sodium (Na) metal is a very encouraging anode material for next-generation rechargeable batteries owing to its high specific capacity, earth-abundance and low-cost. However, the application of Na metal anodes (SMAs) is hampered by dendrite growth and "dead" Na formation caused by the uncontrollable Na deposition, leading to poor cycle life and even safety concerns. Herein, a high-performance Na anode is designed by introducing an artificial VN interlayer on the Na metal surface (Na/VN) by a simple mechanical rolling process to regulate Na nucleation/deposition behaviors. The density functional theory (DFT) and experiment results uncover that the VN possesses high "sodiophilicity", which can facilitate the initially homogeneous Na nucleation and cause Na to distribute evenly on the VN interlayer. Therefore, uniform Na deposition with dendrite-free morphology and prolonged cycling lifespan (over 1060 h at 0.5 mA cm-2/1 mA h cm-2) can be realized. Moreover, the full cell assembled by coupling a Na3V2(PO4)3 (NVP) cathode and Na/VN anode presents superior cycling performance (e.g., 96% capacity retention even after 800 cycles at 5C). This work provides a promising direction for regulating Na nucleation and deposition to achieve dendrite-free metal anodes.
Collapse
Affiliation(s)
- Xianming Xia
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiang Lv
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yu Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Dong Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Fang Tang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Lin Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
13
|
Yin X, Lu Z, Wang J, Feng X, Roy S, Liu X, Yang Y, Zhao Y, Zhang J. Enabling Fast Na + Transfer Kinetics in the Whole-Voltage-Region of Hard-Carbon Anodes for Ultrahigh-Rate Sodium Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109282. [PMID: 35075693 DOI: 10.1002/adma.202109282] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Efficient electrode materials, that combine high power and high energy, are the crucial requisites of sodium-ion batteries (SIBs), which have unwrapped new possibilities in the areas of grid-scale energy storage. Hard carbons (HCs) are considered as the leading candidate anode materials for SIBs, however, the primary challenge of slow charge-transfer kinetics at the low potential region (<0.1 V) remains unresolved till date, and the underlying structure-performance correlation is under debate. Herein, ultrafast sodium storage in the whole-voltage-region (0.01-2 V), with the Na+ diffusion coefficient enhanced by 2 orders of magnitude (≈10-7 cm2 s-1 ) through rationally deploying the physical parameters of HCs using a ZnO-assisted bulk etching strategy is reported. It is unveiled that the Na+ adsorption energy (Ea ) and diffusion barrier (Eb ) are in a positive and negative linear relationship with the carbon p-band center, respectively, and balance of Ea and Eb is critical in enhancing the charge-storage kinetics. The charge-storage mechanism in HCs is evidenced through comprehensive in(ex) situ techniques. The as prepared HCs microspheres deliver a record high rate performance of 107 mAh g-1 @ 50 A g-1 and unprecedented electrochemical performance at extremely low temperature (426 mAh g-1 @ -40 °C).
Collapse
Affiliation(s)
- Xiuping Yin
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Zhixiu Lu
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Jing Wang
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Xiaochen Feng
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Swagata Roy
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Xiangsi Liu
- State Key Laboratory for Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yong Yang
- State Key Laboratory for Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yufeng Zhao
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Jiujun Zhang
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
14
|
Li D, Gong B, Cheng X, Ling F, Zhao L, Yao Y, Ma M, Jiang Y, Shao Y, Rui X, Zhang W, Zheng H, Wang J, Ma C, Zhang Q, Yu Y. An Efficient Strategy toward Multichambered Carbon Nanoboxes with Multiple Spatial Confinement for Advanced Sodium-Sulfur Batteries. ACS NANO 2021; 15:20607-20618. [PMID: 34910449 DOI: 10.1021/acsnano.1c09402] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intricate hollow carbon structures possess vital function for anchoring polysulfides and enhancing the utilization of sulfur in room-temperature sodium-sulfur batteries. However, their synthesis is extremely challenging due to the complex structure. Here, a facile and efficient strategy is developed for the controllable synthesis of N/O-doped multichambered carbon nanoboxes (MCCBs) by selective etching and stepwise carbonization of ZIF-8 nanocubes. The MCCBs consist of porous carbon shells on the outside and connected carbon grids with a hollow structure on the inside, bringing about a MCCBs structure. As a sulfur host, the multichambered structure has better spatial encapsulation and integrated conductivity via the inner interconnected carbon grids, which combines the characteristics of short charge transfer path and superb physicochemical adsorption along with mechanical strength. As expected, the S@MCCBs cathode realizes decent cycle stability (0.045% capacity decay per cycle over 800 cycles at 5 A g-1) and enhanced rate performance (328 mA h g-1 at 10 A g-1). Furthermore, in situ transmission electron microscopy (TEM) observation confirms the good structural stability of the S@MCCBs during the (de)sodiation process. Our work demonstrates an effective strategy for the rational design and accurate construction of intricate hollow materials for high-performance energy storage systems.
Collapse
Affiliation(s)
- Dongjun Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Bingbing Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Xiaolong Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Fangxin Ling
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Ligong Zhao
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 Hubei, China
| | - Yu Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Mingze Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Yu Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026 Anhui, China
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Yu Shao
- Jiujiang DeFu Technology Co., Ltd., Jiujiang, 332000 Jiangxi, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Wenhua Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - He Zheng
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 Hubei, China
| | - Jianbo Wang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 Hubei, China
| | - Cheng Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026 Anhui, China
- National Synchrotron Radiation Laboratory, Hefei, 230026 Anhui, China
| | - Qiaobao Zhang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian 361005, China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026 Anhui, China
- National Synchrotron Radiation Laboratory, Hefei, 230026 Anhui, China
| |
Collapse
|