1
|
Deng W, Yu Z, Yang H, Chen Z, Zheng J, He Z, Shao Y, Jiao S, Tao X, Shen Y, Wu X, Yu Y. Balancing Potassiophilicity and Catalytic Activity of Artificial Interface Layer for Dendrite-Free Sodium/Potassium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412446. [PMID: 39428914 DOI: 10.1002/adma.202412446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/26/2024] [Indexed: 10/22/2024]
Abstract
Potassium metal batteries (PMBs), with high energy density and low cost, are considered a promising option for grid-scale energy storage systems. However, challenges such as the uneven nucleation of K and instability of the solid electrolyte interphase (SEI) layer result in dendrite growth and poor cyclic performance, limiting practical application. To address them, constructing an artificial interface layer with rich defects can enhance the potassium affinity and promote the uniform nucleation of potassium, yet this can also catalyze electrolyte to decompose, leading to unstable SEI formation and poor cycle stability. Herein, a carbon layer with a locally ordered structure (SC-1600) is constructed as the artificial interface to achieve a balance between K affinity and catalytic activity. This optimized design allows for the uniform nucleation of potassium metal and the formation of a dense SEI layer. SC-1600@K symmetric cell can operate for 2000 h at 0.5 mA cm-2 with a capacity of 0.5 mAh cm-2, and the developed full cell shows a high capacity retention of 78% after 1500 cycles at 1 A g-1. Besides, SC-1600@Na effectively extend the life of sodium metal batteries. This work provides a new insight for the construction of efficient K metal artificial interface layer.
Collapse
Affiliation(s)
- Wenjie Deng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zuxi Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hai Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhihao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiale Zheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zixu He
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Shao
- Jiujiang DeFu Technology Co. Ltd., Jiujiang, Jiangxi, 332000, China
| | - Shuhong Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xinyong Tao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yanbin Shen
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Wang S, Liu D, Chen Y, Gao H, Li J, Tang H, Qu D. Optimization of Porous Structures of Carbon Matrices for Loading Red Phosphorus to Achieve High-Capacity and Long-Life Anodes for All-Solid-State Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38041-38052. [PMID: 38993015 DOI: 10.1021/acsami.4c06239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
All-solid-state lithium-ion batteries (ASSLIBs) using sulfide electrolytes and high-capacity alloy-type anodes have attracted sizable interest due to their potential excellent safety and high energy density. Encapsulating insulating red phosphorus (P) inside nanopores of a carbon matrix can adequately activate its electrochemical alloying reaction with lithium. Therefore, the porosity of the carbon matrix plays a crucial role in the electrochemical performance of the resulting red P/carbon composites. Here, we use zeolite-templated carbon (ZTC) with monodisperse micropores and mesoporous carbon (CMK-3) with uniform mesopores as the model hosts of red P. Our results reveal that micropores enable more effective pore utilization for the red P loading, and the P@ZTC material can achieve a record-high content (65.0 wt %) of red P confined within pores. When used as an anode of ASSLIBs, the P@ZTC electrode delivers an ultrahigh capacity of 1823 mA h g-1 and a high initial Coulombic efficiency of 87.44%. After 400 deep discharge-charge cycles (running over 250 days) at 0.2 A g-1, the P@ZTC electrode still holds a reversible capacity of 1260 mA h g-1 (99.92% capacity retention per cycle). Moreover, a P@ZTC||LiNi0.8Co0.1Mn0.1O2 full cell can deliver a reversible areal capacity of over 3 mA h cm-2 at 0.1C after 100 cycles.
Collapse
Affiliation(s)
- Sirui Wang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Dan Liu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yu Chen
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Hongyang Gao
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Jingyi Li
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Deyu Qu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
3
|
Han X, Gong H, Li H, Sun J. Fast-Charging Phosphorus-Based Anodes: Promises, Challenges, and Pathways for Improvement. Chem Rev 2024; 124:6903-6951. [PMID: 38771983 DOI: 10.1021/acs.chemrev.3c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Fast-charging batteries are highly sought after. However, the current battery industry has used carbon as the preferred anode, which can suffer from dendrite formation problems at high current density, causing failure after prolonged cycling and posing safety hazards. The phosphorus (P) anode is being considered as a promising successor to graphite due to its safe lithiation potential, low ion diffusion energy barrier, and high theoretical storage capacity. Since 2019, fast-charging P-based anodes have realized the goals of extreme fast charging (XFC), which enables a 10 min recharging time to deliver a capacity retention larger than 80%. Rechargeable battery technologies that use P-based anodes, along with high-capacity conversion-type cathodes or high-voltage insertion-type cathodes, have thus garnered substantial attention from both the academic and industry communities. In spite of this activity, there remains a rather sparse range of high-performance and fast-charging P-based cell configurations. Herein, we first systematically examine four challenges for fast-charging P-based anodes, including the volumetric variation during the cycling process, the electrode interfacial instability, the dissolution of polyphosphides, and the long-lasting P/electrolyte side reactions. Next, we summarize a range of strategies with the potential to circumvent these challenges and rationally control electrochemical reaction processes at the P anode. We also consider both binders and electrode structures. We also propose other remaining issues and corresponding strategies for the improvement and understanding of the fast-charging P anode. Finally, we review and discuss the existing full cell configurations based on P anodes and forecast the potential feasibility of recycling spent P-based full cells according to the trajectory of recent developments in batteries. We hope this review affords a fresh perspective on P science and engineering toward fast-charging energy storage devices.
Collapse
Affiliation(s)
- Xinpeng Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haochen Gong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, No. 78, Jiuhuabei Avenue, Quzhou City, Zhejiang Province 324000, China
| |
Collapse
|
4
|
Rybkovskiy DV, Lepeshkin SV, Mikhailova AA, Baturin VS, Oganov AR. Lithiation of phosphorus at the nanoscale: a computational study of Li nP m clusters. NANOSCALE 2024; 16:1197-1205. [PMID: 38113059 DOI: 10.1039/d3nr05166h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Systematic structure prediction of LinPm nanoclusters was performed for a wide range of compositions (0 ≤ n ≤ 10, 0 ≤ m ≤ 20) using the evolutionary global optimization algorithm USPEX coupled with density functional calculations. With increasing Li concentration, the number of P-P bonds in the cluster reduces and the phosphorus backbone undergoes the following transformations: elongated tubular → multi-fragment (with mainly P5 rings and P7 cages) → cyclic topology → branched topology → P-P dumbbells → isolated P ions. By applying several stability criteria, we determined the most favorable LinPm clusters and found that they are located in the compositional area between m ≈ n/3 and m ≈ n/3 + 6. For instance, the Li3P7 cluster has the highest stability and is known to be the structural basis of the corresponding bulk crystal. The obtained results provide valuable insights into the lithiation mechanism of nanoscale phosphorus which is of interest for development of novel phosphorus-based anode materials.
Collapse
Affiliation(s)
- Dmitry V Rybkovskiy
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russian Federation.
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russian Federation
| | - Sergey V Lepeshkin
- Lebedev Physical Institute, Russian Academy of Sciences, 53 Lenin Ave., 119991 Moscow, Russian Federation
| | - Anastasiia A Mikhailova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russian Federation.
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov St, 119991 Moscow, Russian Federation
| | - Vladimir S Baturin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russian Federation.
| | - Artem R Oganov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russian Federation.
| |
Collapse
|
5
|
Zhu G, Luo D, Chen X, Yang J, Zhang H. Emerging Multiscale Porous Anodes toward Fast Charging Lithium-Ion Batteries. ACS NANO 2023; 17:20850-20874. [PMID: 37921490 DOI: 10.1021/acsnano.3c07424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
With the accelerated penetration of the global electric vehicle market, the demand for fast charging lithium-ion batteries (LIBs) that enable improvement of user driving efficiency and user experience is becoming increasingly significant. Robust ion/electron transport paths throughout the electrode have played a pivotal role in the progress of fast charging LIBs. Yet traditional graphite anodes lack fast ion transport channels, which suffer extremely elevated overpotential at ultrafast power outputs, resulting in lithium dendrite growth, capacity decay, and safety issues. In recent years, emergent multiscale porous anodes dedicated to building efficient ion transport channels on multiple scales offer opportunities for fast charging anodes. This review survey covers the recent advances of the emerging multiscale porous anodes for fast charging LIBs. It starts by clarifying how pore parameters such as porosity, tortuosity, and gradient affect the fast charging ability from an electrochemical kinetic perspective. We then present an overview of efforts to implement multiscale porous anodes at both material and electrode levels in diverse types of anode materials. Moreover, we critically evaluate the essential merits and limitations of several quintessential fast charging porous anodes from a practical viewpoint. Finally, we highlight the challenges and future prospects of multiscale porous fast charging anode design associated with materials and electrodes as well as crucial issues faced by the battery and management level.
Collapse
Affiliation(s)
- Guanjia Zhu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dandan Luo
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaoyi Chen
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haijiao Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
6
|
Chen Z, Yu Z, Wang L, Huang Y, Huang H, Xia Y, Zeng S, Xu R, Yang Y, He S, Pan H, Wu X, Rui X, Yang H, Yu Y. Oxygen Defect Engineering toward Zero-Strain V 2O 2.8@Porous Reticular Carbon for Ultrastable Potassium Storage. ACS NANO 2023; 17:16478-16490. [PMID: 37589462 DOI: 10.1021/acsnano.3c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Potassium-ion batteries (KIBs) are promising candidates for large-scale energy storage devices due to their high energy density and low cost. However, the large potassium-ion radius leads to its sluggish diffusion kinetics during intercalation into the lattice of the electrode material, resulting in electrode pulverization and poor cycle stability. Herein, vanadium trioxide anodes with different oxygen vacancy concentrations (V2O2.9, V2O2.8, and V2O2.7 determined by the neutron diffraction) are developed for KIBs. The V2O2.8 anode is optimal and exhibits excellent potassium storage performance due to the realization of expanded interlayer spacing and efficient ion/electron transport. In situ X-ray diffraction indicates that V2O2.8 is a zero-strain anode with a volumetric strain of 0.28% during the charge/discharge process. Density functional theory calculations show that the impacts of oxygen defects are embodied in reducing the band gap, increasing electron transfer ability, and lowering the diffusion energy barriers for potassium ions. As a result, the electrode of nanosized V2O2.8 embedded in porous reticular carbon (V2O2.8@PRC) delivers high reversible capacity (362 mAh g-1 at 0.05 A g-1), ultralong cycling stability (98.8% capacity retention after 3000 cycles at 2 A g-1), and superior pouch-type full-cell performance (221 mAh g-1 at 0.05 A g-1). This work presents an oxygen defect engineering strategy for ultrastable KIBs.
Collapse
Affiliation(s)
- Zhihao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zuxi Yu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lifeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yingshan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijuan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuanhua Xia
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, China
| | - Sifan Zeng
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, China
| | - Rui Xu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hai Yang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Yang Y, Dong R, Cheng H, Wang L, Tu J, Zhang S, Zhao S, Zhang B, Pan H, Lu Y. 2D Layered Materials for Fast-Charging Lithium-Ion Battery Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301574. [PMID: 37093221 DOI: 10.1002/smll.202301574] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Indexed: 05/03/2023]
Abstract
The development of electric vehicles has received worldwide attention in the background of reducing carbon emissions, wherein lithium-ion batteries (LIBs) become the primary energy supply systems. However, commercial graphite-based anodes in LIBs currently confront significant difficulty in enduring ultrahigh power input due to the slow Li+ transport rate and the low intercalation potential. This will, in turn, cause dramatic capacity decay and lithium plating. The 2D layered materials (2DLMs) recently emerge as new fast-charging anodes and hold huge promise for resolving the problems owing to the synergistic effect of a lower Li+ diffusion barrier, a proper Li+ intercalation potential, and a higher theoretical specific capacity with using them. In this review, the background and fundamentals of fast-charging for LIBs are first introduced. Then the research progress recently made for 2DLMs used for fast-charging anodes are elaborated and discussed. Some emerging research directions in this field with a short outlook on future studies are further discussed.
Collapse
Affiliation(s)
- Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Ruige Dong
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Silicon Materials, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Hao Cheng
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Linlin Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Jibing Tu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Shichao Zhang
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Sihan Zhao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Silicon Materials, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Bing Zhang
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingying Lu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
8
|
Xu S, Yang Y, Tang F, Yao Y, Lv X, Liu L, Xu C, Feng Y, Rui X, Yu Y. Vanadium fluorophosphates: advanced cathode materials for next-generation secondary batteries. MATERIALS HORIZONS 2023; 10:1901-1923. [PMID: 36942608 DOI: 10.1039/d3mh00003f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Next-generation secondary batteries including sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) are considered the most promising candidates for application to large-scale energy storage systems due to their abundant, evenly distributed and cost-effective sodium/potassium raw materials. The electrochemical performance of SIBs (PIBs) significantly depends on the inherent characteristics of the cathode material. Among the wide variety of cathode materials, sodium/potassium vanadium fluorophosphate (denoted as MVPF, M = Na and K) composites are widely investigated due to their fast ion transportation and robust structure. However, their poor electron conductivity leads to low specific capacity and poor rate capacity, limiting the further application of MVPF cathodes in large-scale energy storage. Accordingly, several modification strategies have been proposed to improve the performance of MVPF such as conductive coating, morphological regulation, and heteroatomic doping, which boost the electronic conductivity of these cathodes and enhance Na (K) ion transportation. Furthermore, the development and application of MVPF cathodes in SIBs at low temperatures are also outlined. Finally, we present a brief summary of the remaining challenges and corresponding strategies for the future development of MVPF cathodes.
Collapse
Affiliation(s)
- Shitan Xu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yi Yang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Fang Tang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xiang Lv
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Lin Liu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Chen Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Xianhong Rui
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
9
|
Senthilkumar SH, Ramasubramanian B, Rao RP, Chellappan V, Ramakrishna S. Advances in Electrospun Materials and Methods for Li-Ion Batteries. Polymers (Basel) 2023; 15:polym15071622. [PMID: 37050236 PMCID: PMC10096578 DOI: 10.3390/polym15071622] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
Electronic devices commonly use rechargeable Li-ion batteries due to their potency, manufacturing effectiveness, and affordability. Electrospinning technology offers nanofibers with improved mechanical strength, quick ion transport, and ease of production, which makes it an attractive alternative to traditional methods. This review covers recent morphology-varied nanofibers and examines emerging nanofiber manufacturing methods and materials for battery tech advancement. The electrospinning technique can be used to generate nanofibers for battery separators, the electrodes with the advent of flame-resistant core-shell nanofibers. This review also identifies potential applications for recycled waste and biomass materials to increase the sustainability of the electrospinning process. Overall, this review provides insights into current developments in electrospinning for batteries and highlights the commercialization potential of the field.
Collapse
Affiliation(s)
- Sri Harini Senthilkumar
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Brindha Ramasubramanian
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Rayavarapu Prasada Rao
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Vijila Chellappan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
10
|
Iqbal MZ, Aziz U, Aftab S, Wabaidur SM, Siddique S, Iqbal MJ. A Hydrothermally Prepared Lithium and Copper MOF Composite as Anode Material for Hybrid Supercapacitor Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Muhammad Zahir Iqbal
- Faculty of Engineering Sciences Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Umer Aziz
- Faculty of Engineering Sciences Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering Sejong University 209 Neungdong-ro, Gwangjin-gu Seoul 05006 South Korea
| | | | - Salma Siddique
- Faculty of Allied Health Sciences and Technology Women University Swabi Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Muhammad Javaid Iqbal
- Centre of Excellence in Solid State Physics University of the Punjab Quaid-e-Azam Campus Lahore 54590 Punjab Pakistan
| |
Collapse
|
11
|
Eun Lim Y, Seok Choi W, Hoon Kim J, Nam Ahn Y, Tae Kim I. The Sn–red P–Fe–based alloy materials for efficient Li–ion battery anodes. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Li H, Li C, Zhao H, Tao B, Wang G. Two-Dimensional Black Phosphorus: Preparation, Passivation and Lithium-Ion Battery Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185845. [PMID: 36144580 PMCID: PMC9504651 DOI: 10.3390/molecules27185845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
Abstract
As a new type of single element direct-bandgap semiconductor, black phosphorus (BP) shows many excellent characteristics due to its unique two-dimensional (2D) structure, which has great potential in the fields of optoelectronics, biology, sensing, information, and so on. In recent years, a series of physical and chemical methods have been developed to modify the surface of 2D BP to inhibit its contact with water and oxygen and improve the stability and physical properties of 2D BP. By doping and coating other materials, the stability of BP applied in the anode of a lithium-ion battery was improved. In this work, the preparation, passivation, and lithium-ion battery applications of two-dimensional black phosphorus are summarized and reviewed. Firstly, a variety of BP preparation methods are summarized. Secondly, starting from the environmental instability of BP, different passivation technologies are compared. Thirdly, the applications of BP in energy storage are introduced, especially the application of BP-based materials in lithium-ion batteries. Finally, based on preparation, surface functionalization, and lithium-ion battery of 2D BP, the current research status and possible future development direction are put forward.
Collapse
Affiliation(s)
- Hongda Li
- Correspondence: (H.L.); (B.T.); (G.W.)
| | | | | | - Boran Tao
- Correspondence: (H.L.); (B.T.); (G.W.)
| | | |
Collapse
|
13
|
Zheng K, Xu S, Yao Y, Chen D, Liu L, Xu C, Feng Y, Rui X, Yu Y. Multi-component surface engineering of Na 3V 2(PO 4) 2O 2F for low-temperature (-40 °C) sodium-ion batteries. Chem Commun (Camb) 2022; 58:10349-10352. [PMID: 36040055 DOI: 10.1039/d2cc03281c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A functional Na3V2(PO4)2O2F (NVPOF) cathode with a multi-component (Na3V(PO4)2, V2O3, and reduced graphene oxide) surface coating is developed via a facile hydrothermal reaction followed by calcination, and exhibits high reversible capability, and long-term cycling stability even at a low temperature of -40 °C. It is demonstrated that the multi-component-coating layer can significantly accelerate the e-/Na+ transport and reduce the interfacial resistance at low temperature. This work provides a novel strategy to boost the kinetics and stability of electrode materials for low-temperature sodium ion batteries.
Collapse
Affiliation(s)
- Kunxiong Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shitan Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Dong Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Lin Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Chen Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
14
|
Yao K, Wu M, Chen D, Liu C, Xu C, Yang D, Yao H, Liu L, Zheng Y, Rui X. Vanadium Tetrasulfide for Next-Generation Rechargeable Batteries: Advances and Challenges. CHEM REC 2022; 22:e202200117. [PMID: 35789529 DOI: 10.1002/tcr.202200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Alkali metal-ion batteries (SIBs and PIBs) and multivalent metal-ion batteries (ZIBs, MIBs, and AIBs), among the next-generation rechargeable batteries, are deemed appealing alternatives to lithium-ion batteries (LIBs) because of their cost competitiveness. Improving the electrochemical properties of electrode materials can greatly accelerate the pace of development in battery systems to cover the increasing demands of realistic applications. Vanadium tetrasulfide (VS4 ) is known as a prospective electrode material due to its unique one-dimensional atomic chain structure with a large chain spacing, weak interactions between adjacent chains, and high sulfur content. This review summarizes the synthetic strategies and recent advances of VS4 as cathodes/anodes for rechargeable batteries. Meanwhile, we describe the structural characteristics and electrochemical properties of VS4 . And we describe in detail its specific applications in batteries such as SIBs, PIBs, ZIBs, MIBs, and AIBs as well as modification strategies. Finally, the opportunities and challenges of VS4 in the domain of energy research are described.
Collapse
Affiliation(s)
- Kaitong Yao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meng Wu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dong Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chuanbang Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan, 430056, China
| | - Chen Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Donghua Yang
- School of Mechanical and Electrical Engineering, Shandong Polytechnic College, Jining, 272067, China
| | - Honghu Yao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lin Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yun Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan, 430056, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|