1
|
Lin Y, Shang J, Liu Y, Wang Z, Bai Z, Ou X, Tang Y. Chlorination Design for Highly Stable Electrolyte toward High Mass Loading and Long Cycle Life Sodium-Based Dual-Ion Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402702. [PMID: 38651672 DOI: 10.1002/adma.202402702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Sodium-based dual ion batteries (SDIBs) have garnered significant attention as novel energy storage devices offering the advantages of high-voltage and low-cost. Nonetheless, conventional electrolytes exhibit low resistance to oxidation and poor compatibility with electrode materials, resulting in rapid battery failure. In this study, for the first time, a chlorination design of electrolytes for SDIB, is proposed. Using ethyl methyl carbonate (EMC) as a representative, chlorine (Cl)-substituted EMC not only demonstrates increased oxidative stability ascribed to the electron-withdrawing characteristics of chlorine atom, electrolyte compatibility with both the cathode and anode is also greatly improved by forming Cl-containing interface layers. Consequently, a discharge capacity of 104.6 mAh g-1 within a voltage range of 3.0-5.0 V is achieved for Na||graphite SDIB that employs a high graphite cathode mass loading of 5.0 mg cm-2, along with almost no capacity decay after 900 cycles. Notably, the Na||graphite SDIB can be revived for an additional 900 cycles through the replacement of a fresh Na anode. As the mass loading of graphite cathode increased to 10 mg cm-2, Na||graphite SDIB is still capable of sustaining over 700 times with ≈100% capacity retention. These results mark the best outcome among reported SDIBs. This study corroborates the effectiveness of chlorination design in developing high-voltage electrolytes and attaining enduring cycle stability of Na-based energy storage devices.
Collapse
Affiliation(s)
- Yuwei Lin
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Shang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Low-Dimensional Energy Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuhua Liu
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Zelin Wang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Zhengyang Bai
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Xuewu Ou
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
2
|
Qian Y, Zhang F, Luo X, Zhong Y, Kang DJ, Hu Y. Synthesis and Electrocatalytic Applications of Layer-Structured Metal Chalcogenides Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310526. [PMID: 38221685 DOI: 10.1002/smll.202310526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Indexed: 01/16/2024]
Abstract
Featured with the attractive properties such as large surface area, unique atomic layer thickness, excellent electronic conductivity, and superior catalytic activity, layered metal chalcogenides (LMCs) have received considerable research attention in electrocatalytic applications. In this review, the approaches developed to synthesize LMCs-based electrocatalysts are summarized. Recent progress in LMCs-based composites for electrochemical energy conversion applications including oxygen reduction reaction, carbon dioxide reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, overall water splitting, and nitrogen reduction reaction is reviewed, and the potential opportunities and practical obstacles for the development of LMCs-based composites as high-performing active substances for electrocatalytic applications are also discussed. This review may provide an inspiring guidance for developing high-performance LMCs for electrochemical energy conversion applications.
Collapse
Affiliation(s)
- Yongteng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, P. R. China
| | - Fangfang Zhang
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, P. R. China
| | - Xiaohui Luo
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, P. R. China
| | - Yijun Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Dae Joon Kang
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| |
Collapse
|
3
|
Zhao Z, Alshareef HN. Sustainable Dual-Ion Batteries beyond Li. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309223. [PMID: 37907202 DOI: 10.1002/adma.202309223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/23/2023] [Indexed: 11/02/2023]
Abstract
The limitations of resources used in current Li-ion batteries may hinder their widespread use in grid-scale energy storage systems, prompting the search for low-cost and resource-abundant alternatives. "Beyond-Li cation" batteries have emerged as promising contenders; however, they confront noteworthy challenges due to the scarcity of suitable host materials for these cations. In contrast, anions, the other crucial component in electrolytes, demonstrate reversible intercalation capacity in specific materials like graphite. The convergence of anion and cation storage has given rise to a new battery technology known as dual-ion batteries (DIBs). This comprehensive review presents the current status, advancements, and future prospects of sustainable DIBs beyond Li. Notably, most DIBs exhibit similar cathode reaction mechanisms involving anion intercalation, while the distinguishing factor lies in the cation types functioning at the anode. Accordingly, the review is organized into sections by various cation types, including Na-, K-, Mg-, Zn-, Ca-, Al-, NH4 + -, and proton-based DIBs. Moreover, a perspective on these novel DIBs is presented, along with proposed protocols for investigating DIBs and promising future research directions. It is envisioned that this review will inspire fresh concepts, ideas, and research directions, while raising important questions to further tailor and understand sustainable DIBs, ultimately facilitating their practical realization.
Collapse
Affiliation(s)
- Zhiming Zhao
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Liu T, Yang Y, Wang X, Yan W, Yu J, Zhang L. Bimetal Oxide Reduction-Induced Perforation Strategy for Preparing a Multi-Microchannel Graphene-Based Anode Material with Rapid Sodium-Ion Diffusion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43691-43701. [PMID: 37694676 DOI: 10.1021/acsami.3c07118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
A sodium-ion battery, with a wide operating range, is much cheaper and safer than a lithium battery. Graphene is regarded as a promising carbon material in the preparation of anode materials. However, the large two-dimensional (2D) graphene sheets restrain the cross-plane diffusion of electrolyte ions, limiting the further improvement of rate performance. Herein, a nanohybrid of FeCo2Se4 and holey graphene (FeCo2Se4/HG) has been successfully prepared by the synchronism of pore creation and active material growth. Specifically, FeCo-oxide nanoparticles serve as the etching agents, generating in-plane nanoholes and subsequently converted into FeCo2Se4. The nanoholes provide a high density of cross-plane diffusion channels for sodium ions, serving as ionic diffusion shortcuts between different graphene layers to accelerate ion transport across the entire electrode. The unique architecture endows FeCo2Se4/HG with superior rate capability (411.2 mA h g-1 at 20 A g-1) and a specific capacity of 432.4 mA h g-1 at 2.0 A g-1 after 2000 cycles with a capacity retention rate of 92.4%. Therefore, pore engineering makes it possible for holey graphene-based electrodes to achieve outstanding rate performance and superb cycling durability.
Collapse
Affiliation(s)
- Tao Liu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China
| | - Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P. R. China
| | - Xuejie Wang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China
| | - Wenxue Yan
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China
| |
Collapse
|
5
|
Cheng Q, Li Y, Gao P, Xia G, He S, Yang Y, Pan H, Yu X. Lithium Azides Induced SnS Quantum Dots for Ultra-Fast and Long-Term Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302188. [PMID: 37259260 DOI: 10.1002/smll.202302188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Indexed: 06/02/2023]
Abstract
Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium storage of SnS, herein, lithium azides (LiN3 )-induced SnS quantum dots (QDs) are first reported using a simple electrospinning strategy, where SnS QDs are uniformly distributed in the carbon fibers. Taking the advantage of LiN3 , which can effectively prevent the growth of crystal nuclei during the thermal treatment, the well-dispersed SnS QDs performs superior Na+ transfer kinetics and pseudocapacitive when used as an anode material for NIBs. The 3D SnS quantum dots embedded uniformly in N-doped nanofibers (SnS QDs@NCF) electrodes display superior long cycling life-span (484.6 mAh g-1 after 5800 cycles at 2 A g-1 and 430.9 mAh g-1 after 7880 cycles at 10 A g-1 ), as well as excellent rate capability (422.3 mAh g-1 at 20 A g-1 ). This fabrication of transition metal sulfides QDs composites provide a feasible strategy to develop NIBs with long life-span and superior rate capability to pave its practical implementation.
Collapse
Affiliation(s)
- Qiaohuan Cheng
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yingxue Li
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Panyu Gao
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Guanglin Xia
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
6
|
Wang Y, Kang W, Sun D. Metal-Organic Assembly Strategy for the Synthesis of Layered Metal Chalcogenide Anodes for Na + /K + -Ion Batteries. CHEMSUSCHEM 2023; 16:e202202332. [PMID: 36823442 DOI: 10.1002/cssc.202202332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 05/20/2023]
Abstract
Layered transition metal chalcogenides (MX, M=Mo, W, Sn, V; X=S, Se, Te) have large ion transport channels and high specific capacity, making them promising for large-sized Na+ /K+ energy-storage technologies. Nevertheless, slow reaction kinetics and huge volume expansion will induce an undesirable electrochemical performance. Numerous efforts have been devoted to designing MX anodes and enhancing their electrochemical performance. Based on the metal-organic assembly strategy, nanostructural engineering, combination with carbon materials, and component regulation can be easily realized, which effectively boost the performance of MX anodes. In this Review, we present a comprehensive overview on the synthesis of MX nanostructure using the metal-organic assembly strategy, which can realize the design of MX nanostructures, based on self-sacrificial templates, host@guest tailored templates, post-modified layer and derivative templates. The preparation routes and structure evolution are mainly discussed. Then, Mo-, W-, Sn-, V-based chalcogenides used for Na+ /K+ energy storage are reviewed, and the relationship between the structure and the electrochemical performance, as well as the energy storage mechanism are emphasized. In addition, existing challenges and future perspectives are also presented.
Collapse
Affiliation(s)
- Yuyu Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Wenpei Kang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| |
Collapse
|
7
|
Lei H, Wang H, Cheng B, Zhang F, Liu X, Wang G, Wang B. Anion-Vacancy Modified WSSe Nanosheets on 3D Cross-Networked Porous Carbon Skeleton for Non-Aqueous Sodium-Based Dual-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206340. [PMID: 36564352 DOI: 10.1002/smll.202206340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Sodium-based dual-ion batteries (SDIBs) have become a new type of energy storage device with great application value because of their high operating voltage, high energy density, and low cost. However, transition-metal dichalcogenide (TMD) anodes show unsatisfactory Na+ electrochemical performance owing to the low intrinsic conductivity and inferior ion transport kinetics. Here, an elaborate design is developed to prepare a composite of WSSe nanosheets supported on a 3D cross-networked porous carbon skeleton (WSSe@CPCS), which possesses en-rich anion vacancies and WSSe with expanded inter-layer spacing, as well as an interconnected porous structure. As a result, the WSSe@CPCS anode for sodium-ion batteries (SIBs) exhibits preeminent reversible capacities, excellent cycle stability, and superior rate capability. The systematic electrochemical kinetic analysis and density functional theory results further show that the effect of anion vacancies and CPCS synergistically enhances the conductivity and reduces charge transfer resistance, thus making a great contribution to fast reaction kinetics. Finally, the implementations of the WSSe@CPCS anode in progressive SIB and DIB full-cell configurations exhibit satisfactory performance, which reveals their widely practical application. This research will provide an exciting approach to designing advanced defect-structured tungsten-based TMD materials for SIBs, DIBs, and even a broad range of energy storage.
Collapse
Affiliation(s)
- Hongyu Lei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
| | - Bingxue Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
| | - Fan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiaojie Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
| | - Gang Wang
- State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710127, P. R. China
| | - Beibei Wang
- State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
8
|
Zhao Z, Xu T, Yu X. Unlock the Potassium Storage Behavior of Single-Phased Tungsten Selenide Nanorods via Large Cation Insertion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208096. [PMID: 36341502 DOI: 10.1002/adma.202208096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Metal chalcogenide anodes with a layered structure have been regarded as potential K-based electrochemical energy storage devices with high energy density for large-scale energy storage applications. However, their development is impeded by the slow K-ion transport kinetics and poor structural stability. In this work, the energy-storage behavior is investigated first and decisively associated them with the capacity-degradation of the promising layer-structured WSe2 from an integrated chemical and physical point of view. Then, a single-phased WSe2 with pre-intercalated high K content (SP-Kx WSe2 ) is designed to overcome the capacity-degradation issue fundamentally. Theoretical calculations clarify the beneficial effect of K-ions inside the interlayer of WSe2 on boosting its electrochemical performance, including increasing the electronic conductivity, promoting the K-ion diffusivity, and improving the structural stability. The novel design enables the K-ions pre-intercalated WSe2 anode material to exhibit a high reversible specific capacity of 211 mAh g-1 at 5 A g-1 and superior cycling stability (89.3% capacity retention after 5000 cycles at 1 A g-1 ). Especially, the K-ion hybrid capacitor, assembled from the anode of SP-Kx WSe2 and the cathode of porous activated carbon, delivers superior energy-density up to 175 Wh kg-1 , high power-density as well as exceptional cycling stability.
Collapse
Affiliation(s)
- Zhongchen Zhao
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Tian Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
Hu X, Zhu R, Wang B, Liu X, Wang H. Dual Regulation of Metal Doping and Adjusting Cut-Off Voltage for MoSe 2 to Achieve Reversible Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200437. [PMID: 35714299 DOI: 10.1002/smll.202200437] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
MoSe2 , as a typical 2D material, possesses tremendous potential in Na-ion batteries (SIBs) owing to larger interlayer distance, more favorable band gap structure, and higher theoretical specific capacity than other analogs. Nevertheless, the low intrinsic electronic conductivity and irreversible conversion of discharged products of Mo/Na2 Se to MoSe2 seriously hamper its electrochemical performance. Herein, through a facile hydrothermal method combined with calcination process, Sn-doped MoSe2 nanosheets grown on graphene substrate in the vertical direction are fabricated. Benefiting from the improved electronic conductivity contributed by the abundant defects and expanded interlamellar spacing of MoSe2 originated from Sn doping, combined with a smart strategy of raising discharge cut-off voltage to 0.2 V during the actual performance testing for SIBs, the as-fabricated anode material delivers superior Na-ions storage performance in terms of electrons/ions transfer, reversible sodium storage as well as cycle stability. An ultra-stable reversible specific capacity of 268.5 mAh g-1 at 1 A g-1 can be maintained after 1600 cycles. Moreover, the great sodium storage property in the SIB full-cell system of the as-obtained nanocomposite illustrates practical potential. Density functional theory calculation and in situ/ex situ measurements are employed to further reveal the storage mechanism and process of Na-ions.
Collapse
Affiliation(s)
- Xuejiao Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an, 710127, P. R. China
| | - Ruiyu Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an, 710127, P. R. China
| | - Beibei Wang
- Shaanxi Joint Lab of Graphene (NWU), Xi'an, 710127, P. R. China
- State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China
| | - Xiaojie Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an, 710127, P. R. China
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an, 710127, P. R. China
| |
Collapse
|
10
|
Li S, Luo S, Rong L, Wang L, Xi Z, Liu Y, Zhou Y, Wan Z, Kong X. Innovative Materials for Energy Storage and Conversion. Molecules 2022; 27:3989. [PMID: 35807232 PMCID: PMC9268226 DOI: 10.3390/molecules27133989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
The metal chalcogenides (MCs) for sodium-ion batteries (SIBs) have gained increasing attention owing to their low cost and high theoretical capacity. However, the poor electrochemical stability and slow kinetic behaviors hinder its practical application as anodes for SIBs. Hence, various strategies have been used to solve the above problems, such as dimensions reduction, composition formation, doping functionalization, morphology control, coating encapsulation, electrolyte modification, etc. In this work, the recent progress of MCs as electrodes for SIBs has been comprehensively reviewed. Moreover, the summarization of metal chalcogenides contains the synthesis methods, modification strategies and corresponding basic reaction mechanisms of MCs with layered and non-layered structures. Finally, the challenges, potential solutions and future prospects of metal chalcogenides as SIBs anode materials are also proposed.
Collapse
Affiliation(s)
- Shi Li
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Shi Luo
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Liya Rong
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Linqing Wang
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ziyang Xi
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yong Liu
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yuheng Zhou
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zhongmin Wan
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Xiangzhong Kong
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
11
|
Bi Z, Zhang Y, Li X, Liang Y, Ma W, Zhou Z, Zhu M. Porous fibers of carbon decorated T-Nb2O5 nanocrystal anchored on three-dimensional rGO composites combined with rGO nanosheets as an anode for high-performance flexible sodium-ion capacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|