1
|
Jia QQ, Teri G, Luo JQ, Ni HF, Huang PZ, Lun MM, Zhang ZX, Zhang Y, Fu DW. Experimental Observation of the Fully Ferroelectric-Fully Ferroelastic Effect in Multiferroic Hybrid Perovskites. J Am Chem Soc 2024. [PMID: 39034829 DOI: 10.1021/jacs.4c06929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Since the concept of "multiferroic" was first proposed in 1968, the coupling effect between different ferroic orders has attracted great interest in energy, information, and biomedical fields. However, the fully ferroelectric-fully ferroelastic effect has never been experimentally observed in hybrid perovskites, even though this effect was predicted to exist half a century ago. Realizing such cross-linking effects of polarization vectors and strain tensors has always been a huge challenge because of the complex difference in these two ferroic origins. Here, we report a multiferroic with full ferroelectricity and full ferroelasticity in two-dimensional (2D) hybrid perovskites based on ferroelectrochemistry. The dynamic molecular reorientations endow (cyclohexanemethylaminium)2PbCl4 with a desired symmetry change of 4̅2mFmm2 at a Curie temperature of 411.8 K. More strikingly, the switchable evolution of ferroelastic domains was directly observed under the control of either electric or mechanical fields, which is the first experimental observation of a fully ferroelectric-fully ferroelastic effect in hybrid perovskites. This work would provide new insights into understanding the intrinsic cross-linking mechanism between ferroelectricity and ferroelasticity toward the development of multichannel interactive microelectronic devices.
Collapse
Affiliation(s)
- Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Jia-Qi Luo
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Meng-Meng Lun
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
2
|
Inui GK, Besse R, González JE, Da Silva JLF. Atomic-scale insights in the interplay of chemical composition and chirality in two-dimensional chiral perovskites. Phys Chem Chem Phys 2024; 26:16719-16731. [PMID: 38817152 DOI: 10.1039/d4cp00924j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The incorporation of chiral molecules (A) in materials based on hybrid ABX3 perovskites has opened new paths to tune the optoelectronic properties of perovskites through the transfer of chirality to the inorganic BX framework. However, our atomistic understanding of the role of chemical BX composition in the magnitude of the chirality transfer is far from complete. In this study, we use density functional theory calculations and the experimental Ruddlesden-Popper chiral (R-/S-NEA)2PbBr4 structure (R-/S-NEA = R-/S-1-(1-naphthyl)ethylammonium) to investigate the effects induced by chemical substitution of Pb by Ge or Sn and Br by Cl or I on the transfer of chirality and physical-chemical properties. We have observed that different enantiomers result in opposing orientations of octahedral tiltings within the inorganic framework, thus transferring chirality to the inorganic structure. The tilts are greater in perovskites based on Pb and decrease in the sequence of Cl to Br to I, as a consequence of the decrease in the halide electronegativity that weakens the interactions between X and the -N+H3 group of the NEA chiral cation. The chirality transfer is also evident in the Rashba-Dresselhaus effects on the electronic band structure, in which we found magnitudes directly correlated to the trends of octahedra tilting. The band offsets of substitutions B and X are predominantly influenced by their natural atomic energy levels, while organic molecules play a pivotal role in modulating the ionic potential and electron affinity in systems containing light atoms. The band gap values range from 1.91 up to 3.77 eV, with chirality and anion electronegativity providing significant tuning effects on whether the band gaps are direct or indirect.
Collapse
Affiliation(s)
- Guilherme K Inui
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, 13560-970, Brazil.
| | - Rafael Besse
- University of Brasília, Institute of Physics, Brasília, DF, 70910-970, Brazil
| | - José E González
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, 13560-970, Brazil.
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
3
|
Zou QH, Wang ZJ, Wu LK, Feng Y, Jiang LL, Li JR, Ye HY, Shi C. Three-Dimensional Bimetallic Ammonium K-Eu Nitrate with a Rare (6,6)-Connected Ion Topology Exhibiting Structural Phase Transition and Photoluminescence Properties. Inorg Chem 2024; 63:10817-10822. [PMID: 38781577 DOI: 10.1021/acs.inorgchem.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A K-Eu bimetallic ammonium metal-nitrate three-dimensional (3D) framework incorporating R-N-methyl-3-hydroxyquinuclidine, (RM3HQ)2KEu(NO3)6 (RM3HQ = R-N-methyl-3-hydroxyquinuclidine, 1), was characterized and reported. Distinguishing from the former hybrid rare-earth double perovskites, 1 adopts a mixed corner- and face-sharing K+/Eu3+-centered polyhedral connectivity to form a 3D inorganic framework, showing a rare (6, 6)-connected ion topology with a 66 framework. Notably, 1 exhibits clear phase transition, and the switchable thermodynamic behavior is confirmed by variable-temperature dielectric measurements and second-harmonic generation response. Moreover, 1 also shows photoluminescence properties. The activator Eu3+ plays a crucial role in this process, leading to a significant narrow emission at 592 nm with a photoluminescence quantum yield (PLQY) of 20.76%. The fluorescence lifetime (FLT) of 1 is 4.32 ms. This finding enriches the bimetallic hybrid system for potential electronic and/or luminescence applications.
Collapse
Affiliation(s)
- Qing-Hua Zou
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| | - Ze-Jie Wang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| | - Ling-Kun Wu
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| | - Yan Feng
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| | - Lu-Lu Jiang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| | - Jian-Rong Li
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| | - Chao Shi
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 330000, China
| |
Collapse
|
4
|
Jia QQ, Lu HF, Luo JQ, Zhang YY, Ni HF, Zhang FW, Wang J, Fu DW, Wang CF, Zhang Y. Organic-Inorganic Rare-Earth Double Perovskite Ferroelectric with Large Piezoelectric Response and Ferroelasticity for Flexible Composite Energy Harvesters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306989. [PMID: 38032164 DOI: 10.1002/smll.202306989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/11/2023] [Indexed: 12/01/2023]
Abstract
Hybrid organic-inorganic perovskite (HOIP) ferroelectric materials have great potential for developing self-powered electronic transducers owing to their impressive piezoelectric performance, structural tunability and low processing temperatures. Nevertheless, their inherent brittle and low elastic moduli limit their application in electromechanical conversion. Integration of HOIP ferroelectrics and soft polymers is a promising solution. In this work, a hybrid organic-inorganic rare-earth double perovskite ferroelectric, [RM3HQ]2RbPr(NO3)6 (RM3HQ = (R)-N-methyl-3-hydroxylquinuclidinium) is presented, which possesses multiaxial nature, ferroelasticity and satisfactory piezoelectric properties, including piezoelectric charge coefficient (d33) of 102.3 pC N-1 and piezoelectric voltage coefficient (g33) of 680 × 10-3 V m N-1. The piezoelectric generators (PEG) based on composite films of [RM3HQ]2RbPr(NO3)6@polyurethane (PU) can generate an open-circuit voltage (Voc) of 30 V and short-circuit current (Isc) of 18 µA, representing one of the state-of-the-art PEGs to date. This work has promoted the exploration of new HOIP ferroelectrics and their development of applications in electromechanical conversion devices.
Collapse
Affiliation(s)
- Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Jia-Qi Luo
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Ying-Yu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Feng-Wen Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P.R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| |
Collapse
|
5
|
Sun XT, Zhang YY, Han Y, Wang XP, Li J, Li JY, Ni HF, Fu DW, Zhang ZX. The halogen substitution strategy of inorganic skeletons triggers dielectric and band gap regulation of hybrid perovskites. Dalton Trans 2023; 52:16406-16412. [PMID: 37870776 DOI: 10.1039/d3dt02924g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Organic-inorganic hybrid perovskites (OIHPs) with dielectric switching functions have aroused comprehensive scientific interest, benefitting from their promising applications in sensors and information storage. However, to date, most of these materials discovered thus far possess a single function and are limited in their applicability, failing to meet the requirements of diverse applications. Moreover, the discovery of these materials has been largely serendipitous. Building multifunctional OIHPs with dielectric switching and semiconductors remains a daunting task. In this context, by introducing [C7H16N]+ as cations and in combination with lead halide with semiconducting properties, two OIHPs [C7H16N]PbI3 (1) and [C7H16N]PbBr3 (2) ([C7H16N]+ = (cyclopropylmethyl) trimethylammonium) have been successfully designed. They have dielectric switching properties close to 253 and 279 K and semiconducting behavior with band gaps of 2.67 and 3.22 eV. The phase transition temperature increased by 26 K through halogen substitution. In summary, our findings in this study provide insights into the application of the halogen substitution regulation strategy and open up new possibilities for designing perovskite semiconductors with dielectric switching functionality.
Collapse
Affiliation(s)
- Xiao-Tong Sun
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China.
| | - Ying-Yu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Yan Han
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Xiao-Ping Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Jie Li
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China.
| | - Jun-Yi Li
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China.
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China.
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| |
Collapse
|
6
|
Susarla S, Hsu S, Gómez-Ortiz F, García-Fernández P, Savitzky BH, Das S, Behera P, Junquera J, Ercius P, Ramesh R, Ophus C. The emergence of three-dimensional chiral domain walls in polar vortices. Nat Commun 2023; 14:4465. [PMID: 37491370 PMCID: PMC10368707 DOI: 10.1038/s41467-023-40009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Chirality or handedness of a material can be used as an order parameter to uncover the emergent electronic properties for quantum information science. Conventionally, chirality is found in naturally occurring biomolecules and magnetic materials. Chirality can be engineered in a topological polar vortex ferroelectric/dielectric system via atomic-scale symmetry-breaking operations. We use four-dimensional scanning transmission electron microscopy (4D-STEM) to map out the topology-driven three-dimensional domain walls, where the handedness of two neighbor topological domains change or remain the same. The nature of the domain walls is governed by the interplay of the local perpendicular (lateral) and parallel (axial) polarization with respect to the tubular vortex structures. Unique symmetry-breaking operations and the finite nature of domain walls result in a triple point formation at the junction of chiral and achiral domain walls. The unconventional nature of the domain walls with triple point pairs may result in unique electrostatic and magnetic properties potentially useful for quantum sensing applications.
Collapse
Affiliation(s)
- Sandhya Susarla
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA.
- Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, 94720, CA, USA.
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, 85280, AZ, USA.
| | - Shanglin Hsu
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA
- Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, 94720, CA, USA
| | - Fernando Gómez-Ortiz
- Departmento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Cantabria Campus Internacional Santander, Santander, 39005, Spain
| | - Pablo García-Fernández
- Departmento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Cantabria Campus Internacional Santander, Santander, 39005, Spain
| | - Benjamin H Savitzky
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA
| | - Sujit Das
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Piush Behera
- Department of Materials Science & Engineering, University of California, Berkeley, 94720, CA, USA
| | - Javier Junquera
- Departmento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Cantabria Campus Internacional Santander, Santander, 39005, Spain
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA
| | - Ramamoorthy Ramesh
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA.
- Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, 94720, CA, USA.
- Department of Physics, University of California, Berkeley, Berkeley, 94720, CA, USA.
- Department of Physics, Rice University, Houston, 77005, TX, USA.
- Department of Materials Science and Nanoengineering, Houston, 77005, TX, USA.
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA.
| |
Collapse
|
7
|
Lin JH, Lou JR, Ye LK, Hu BL, Zhuge PC, Fu DW, Su CY, Zhang Y. Halogen Engineering To Realize Regulable Multipolar Axes, Nonlinear Optical Response, and Piezoelectricity in Plastic Ferroelectrics. Inorg Chem 2023; 62:2870-2876. [PMID: 36706461 DOI: 10.1021/acs.inorgchem.2c04295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Compared with uniaxial molecular ferroelectrics, multiaxial ferroelectrics have better application prospects because they are no longer subject to the single-crystal form and have been pursued in recent years. Halogen engineering refers to the adjustment of halogens in materials at the atomic level, which can not only explore multiaxial ferroelectrics but also help to improve piezoelectrics, recently. In this work, we successfully synthesized and characterized three multiaxial plastic ferroelectrics through the precise molecular design from I to Cl, confirming the increase of the number of polar axes of ferroelectrics from 3 to 6, the increase of second-harmonic generation density from 2.1 times to nearly 6 times of monopotassium phosphate, and the increase of piezoelectric coefficient by 140%. This systematic work has proved that halogen engineering can not only enrich the family of multiaxial plastic ferroelectrics but also promote the further development of nonlinear optical and piezoelectric materials.
Collapse
Affiliation(s)
- Jia-He Lin
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jia-Rui Lou
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Lou-Kai Ye
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Bo-Lan Hu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Peng-Cheng Zhuge
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Chang-Yuan Su
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China.,Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China.,Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|