1
|
Yan K, Miskolzie M, Banales Mejia F, Peng C, Ekanayake AI, Atrazhev A, Cao J, Maly DJ, Derda R. Late-Stage Reshaping of Phage-Displayed Libraries to Macrocyclic and Bicyclic Landscapes using a Multipurpose Linchpin. J Am Chem Soc 2025; 147:789-800. [PMID: 39702930 DOI: 10.1021/jacs.4c13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Genetically encoded libraries (GEL) are increasingly being used for the discovery of ligands for "undruggable" targets that cannot be addressed with small molecules. Foundational GEL platforms like phage-, yeast-, ribosome-, and mRNA-display have enabled the display of libraries composed of 20 natural amino acids (20AA). Unnatural amino acids (UAA) and chemical post-translational modification (cPTM) expanded GEL beyond the 20AA space to yield unnatural linear, cyclic, and bicyclic peptides. The standard operating procedure incorporates UAA and cPTM into a "naive" library with 108-1012 compounds and uses a chemically upgraded library in multiple rounds of selection to discover target-binding hits. However, such an approach uses zero knowledge of natural peptide-receptor interactions that might have been discovered in selections performed with 20AA libraries. There is currently no consensus regarding whether "zero-knowledge" naive libraries or libraries with pre-existing knowledge can offer a more effective path to discovery of molecular interactions. In this manuscript, we evaluated the feasibility of discovery of macrocyclic and bicyclic peptides from "nonzero-knowledge" libraries. We approach this problem by late-stage chemical reshaping of a preselected phage-displayed landscape of 20AA binders to NS3aH1 protease. The reshaping is performed using a novel multifunctional C2-symmetric linchpin, 3,5-bis(bromomethyl)benzaldehyde (termed KYL), that combines two electrophiles that react with thiols and an aldehyde group that reacts with N-terminal amine. KYL diversified phage-displayed peptides into bicyclic architectures and delineated 2 distinct sequence populations: (i) peptides with the HXDMT motif that retained binding upon bicyclization and (ii) peptides without the HXDMT motif that lost binding once chemically modified. The same HXDMT family can be found in traditional selections starting from the naive KYL-modified library. Our report provides a case study for discovering advanced, chemically upgraded macrocycles and bicycles from libraries with pre-existing knowledge. The results imply that other selection campaigns completed in 20AA space, potentially, can serve for late-stage reshaping and as a starting point for the discovery of advanced peptide-derived ligands.
Collapse
Affiliation(s)
- Kejia Yan
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Mark Miskolzie
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Fernando Banales Mejia
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, Washington 98195, United States
| | - Chuanhao Peng
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Arunika I Ekanayake
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- 48Hour Discovery, Nanotechnology Research Centre, Edmonton, AB T6G 2M9, Canada
| | - Jessica Cao
- 48Hour Discovery, Nanotechnology Research Centre, Edmonton, AB T6G 2M9, Canada
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
2
|
Xiang H, Bai L, Zhang X, Dan T, Cheng P, Yang X, Ai H, Li K, Lei X. A facile strategy for the construction of a phage display cyclic peptide library for the selection of functional macrocycles. Chem Sci 2024; 15:11847-11855. [PMID: 39092106 PMCID: PMC11290325 DOI: 10.1039/d4sc03207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/16/2024] [Indexed: 08/04/2024] Open
Abstract
Cyclic peptides represent invaluable scaffolds in biological affinity, providing diverse collections for discovering functional molecules targeting challenging biological entities and protein-protein interactions. The field increasingly focuses on developing cyclization strategies and chemically modified combinatorial libraries in conjunction with M13 phage display, to identify macrocyclic peptide inhibitors for traditionally challenging targets. Here, we introduce a cyclization strategy utilizing ortho-phthalaldehyde (OPA) for the discovery of active macrocycles characterized by asymmetric scaffolds with side-chain cyclization. Through this approach, aldehyde groups attached to free molecules sequentially attack the ε-amine of lysine and the thiol of cysteine, facilitating the rapid cyclization of genetically encoded linear precursor libraries displayed on phage particles. The construction of a 109-member library and subsequent screening successfully identified cyclic peptide binders targeting three therapeutically relevant proteins: PTP1B, NEK7, and hKeap1. The results confirm the efficacy in rapidly obtaining active ligands with micromolar potency. This work provides a fast and efficient operable high-throughput platform for screening functional peptide macrocycles, which hold promise for broad application in therapeutics, chemically biological probes, and disease diagnosis.
Collapse
Affiliation(s)
- Hua Xiang
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Liwen Bai
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Xindan Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Ting Dan
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Peng Cheng
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Xiaoqin Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Honglian Ai
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Kai Li
- College of Life Sciences, South-Central Minzu University Wuhan 430074 China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
3
|
Thompson T, Pewklang T, Piyanuch P, Wanichacheva N, Kamkaew A, Burgess K. A fluorescent electrophile for CLIPS: self indicating TrkB binders. Org Biomol Chem 2024; 22:506-512. [PMID: 38111346 PMCID: PMC10863675 DOI: 10.1039/d3ob01654d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Combination of cysteine-containing peptides with electrophiles provides efficient access to cyclo-organopeptides. However, there are no routes to intrinsically fluorescent cyclo-organopeptides containing robust, brilliant fluorophores emitting at wavelengths longer than cellular autofluorescence. We show such fluorescent cyclo-organopeptides can be made via SNAr reactions of cysteine-containing peptides with a BODIPY system. Seven compounds of this type were prepared to test as probes; six contained peptide sequences corresponding to loop regions in brain-derived neurotrophic factor and neurotrophic factor 4 (BDNF and NT-4) which bind tropomyocin receptor kinase B (TrkB). Cellular assays in serum-free media indicated two of the six key compounds induced survival of HEK293 cells stably transfected with TrkB whereas a control did not. The two compounds inducing cell survival bound TrkB on those cells (Kd ∼40 and 47 nM), illustrating how intrinsically fluorescent cyclo-organopeptides can be assayed for quantifiable binding to surface receptors in cell membrane environments.
Collapse
Affiliation(s)
- Tye Thompson
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA.
| | - Thitima Pewklang
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA.
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pornthip Piyanuch
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nantanit Wanichacheva
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA.
| |
Collapse
|
4
|
Zhang Y, Yin R, Jiang H, Wang C, Wang X, Wang D, Zhang K, Yu R, Li X, Jiang T. Peptide Stapling through Site-Directed Conjugation of Triazine Moieties to the Tyrosine Residues of a Peptide. Org Lett 2023; 25:2248-2252. [PMID: 36966420 DOI: 10.1021/acs.orglett.3c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Peptide stapling is a strategy for improving the biological properties of peptides. Herein, we report a novel method for stapling peptides that utilizes bifunctional triazine moieties for two-component conjugation to the phenolic hydroxyl groups of tyrosine, which enables efficient stapling of unprotected peptides. In addition, we applied this strategy to the RGD peptide that can target integrins and demonstrated that the stapled RGD peptide had significantly improved plasma stability and integrin-targeting ability.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute of Qiangdao, Qingdao 266237, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chaoming Wang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao Wang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Dongping Wang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Kai Zhang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|