1
|
Yuan Q, Gao J, Zheng Y, Xu C, Cheng L. Assembling Gold Icosahedrons to Superatomic Molecules Mimicking the Bonding Rules in Molecules. Inorg Chem 2025; 64:452-459. [PMID: 39748497 DOI: 10.1021/acs.inorgchem.4c04896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Icosahedral gold clusters with high-symmetry geometry and magic electronic shells are potential candidates for cluster-assembling, while their assembling rules are still awaiting further investigation. In this work, we use the all-metal icosahedral M@Au12 as a building block to assemble a series of bi-, tri-, tetra-, and penta-superatomic molecules with diverse superatomic bonding patterns via face-fusion, aiming to systemically explore the bonding rule of superatoms. Chemical bonding analyses indicate that these bi-, tri-, tetra-, and penta-superatomic molecules [M@Au12]n+/0 (M = Re, W, Ta, Ti, Hf, Ir, and Pt) can be considered electronic analogues to Cl2, O2, N2, CO, O3, CO2, NCl3, and CF4 molecules with single, double, triple, and multicenter bonds, respectively. In multi-superatomic molecules, the central superatom undergoes super S-P orbital hybridizations to form super σ bonds with each peripheral superatom, mimicking the bonding rules of molecules. Due to the large size of superatoms, superatomic molecules also present some distinct bonding characters in structure and relative energy compared to their analogues. This paper systemically investigated the superatomic bonding rules, giving references to further design and synthesis of superatom-assembled materials.
Collapse
Affiliation(s)
- Qinqin Yuan
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Jiahao Gao
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Yuanyuan Zheng
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Chang Xu
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
2
|
Li Y, Liang D, Wang R, Yang S, Liu W, Sang Q, Pu J, Wang Y, Qian K. Interfacial Self-Assembly Nanostructures: Constructions and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405318. [PMID: 39301942 DOI: 10.1002/smll.202405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Interfacial self-assembly nanoarrays refer to the spontaneously organized nanostructures at interfaces, relying on the intrinsic properties of involved materials, such as surface energy, molecular structure, and interactions. In recent years, the exponential growth of self-assembly nanotechnology has substantially expanded the utility of nanomaterials. Particularly, non-covalent interactions-based interfacial self-assembly represents a viable and promising approach for the synthesis of novel nanostructure. This review introduces the significance and current development status of interfacial self-assembly technology, focusing on the driving mode, application, and prospects of interfacial self-assembly nanoarrays over the past few years.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Dingyitai Liang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Ruimin Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Shouzhi Yang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Wanshan Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Qi Sang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Jun Pu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Yuning Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| |
Collapse
|
3
|
Fortes Martín R, Rüstig S, Bald I, Koetz J. Versatility of the Templated Surface Assembly of Nanoparticles from Water-in-Oil Microemulsions in Equivalent Hybrid Nanostructured Films. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1726. [PMID: 39513806 PMCID: PMC11548002 DOI: 10.3390/nano14211726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Water-in-oil microemulsions, as stable colloidal dispersions from quasi-ternary mixtures, have been used in diverse applications, including nanoreactors for confined chemical processes. Their use as soft templates not only includes nanomaterial synthesis but also the interfacial assembly of nanoparticles in hybrid nanostructures. Especially the hierarchical arrangement of different types of nanoparticles over a surface in filament networks constitutes an interesting bottom-up strategy for facile and tunable film coating. Herein, we demonstrate the versatility of this surface assembly from microemulsion dispersions. Transmission and Scanning Electron Microscopy, in addition to UV-Vis Transmittance Spectroscopy, proved the assembly tunability after solvent evaporation under different conditions: the nanostructured films can be formed over different surfaces, using different compositions of liquid phases, as well as with the incorporation of different nanoparticle materials while keeping equivalent surface functionalization. This offers the possibility of adapting different components and conditions for coating tuning on a larger scale with simple procedures.
Collapse
Affiliation(s)
| | | | | | - Joachim Koetz
- Institute of Chemistry, Universität Potsdam, 14469 Potsdam, Germany (I.B.)
| |
Collapse
|
4
|
Yu B, Ma Y, Wang Y, Song L, Yu G, Zhang X, Wang Q, Pang Z, Zhang Y, Wang Q, Wang J. Self-Assembly Hybrid Manufacture of Nanoarrays for Metasurfaces. SMALL METHODS 2024:e2401288. [PMID: 39443832 DOI: 10.1002/smtd.202401288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The development of metasurfaces necessitates the rapid fabrication of nanoarrays on diverse substrates at large scales, the preparation of patterned nanoarrays on both planar and curved surfaces, and even the creation of nanoarrays on prefabricated structures to form multiscale metastructures. However, conventional fabrication methods fall short of these rigorous requirements. In this work, a novel self-assembly hybrid manufacturing (SAHM) method is introduced for the rapid and scalable fabrication of shape-controllable nanoarrays on various rigid and flexible substrates. This method can be easily integrated with other fabrication techniques, such as lithography and screen printing, to produce patterned nanoarrays on both planar and non-developable surfaces. Utilizing the SAHM method, nanoarrays are fabricated on prefabricated micropillars to create multiscale pillar-nanoarray metastructures. Measurements indicate that these multiscale metastructures can manipulate electromagnetic waves across a range of wavelengths. Therefore, the SAHM method demonstrates the potential of multiscale structures as a new paradigm for the design and fabrication of metasurfaces.
Collapse
Affiliation(s)
- Bowen Yu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuan Ma
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yujiao Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Lele Song
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Guoxu Yu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xuanhe Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Qingyi Wang
- School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 102616, P. R. China
| | - Zuobo Pang
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Ye Zhang
- School of Automation, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Qi Wang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiadao Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Tang HX, He ZH, Liu CG, Zheng XK, Zhang ZJ. Tumor Microenvironment-Responsive Biodegradable Nanomedicine for Self-Enhanced Synergistic Chemo-, Photothermal, and Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52023-52035. [PMID: 39303011 DOI: 10.1021/acsami.4c09671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The nanoscale multidrug codelivery system for synergistic therapy is an effective strategy for tumor treatment. However, the low drug delivery efficiency and poor therapeutic effects limit its application. Here, based on the coordination effect of Artemisinin (Art), quercetin (Qc), and Fe3+, we had constructed a safe and efficient carrier-free hyaluronic acid (HA)-modified Art-Fe-Qc nanoparticles (AFQ@HA NPs) for enhanced chemotherapy/photothermal therapy (PTT)-chemodynamic therapy (CDT) synergistic therapy, which achieved an ultrahigh drug loading efficiency and a multifunction anticancer strategy. The results showed that high drug loading was achieved based on drug coordination self-assembly, with Art and Qc contents of 38.6 and 42.7%, respectively. At the same time, based on the Qc-Fe coordination molecular network, the system had excellent photothermal conversion performance with an efficiency of 57.3% and could effectively inhibit the expression of HSP70, achieving enhanced PTT. Further, under the stimulation of excessive H2O2 and glutathione (GSH) in the tumor microenvironment, the AFQ@HA NPs were continuously degraded, while releasing Art and Fe3+/Fe2+ to achieve iron ion-enhanced CDT. The results of in vitro and in vivo experiments showed that AFQ@HA NPs could achieve chemotherapy-PTT-CDT synergistic therapy in response to tumor microenvironment by passively targeting and actively targeting tumor cells with CD44, demonstrating its excellent targeted antitumor effects.
Collapse
Affiliation(s)
- Han-Xiao Tang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhi-Hang He
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Chen-Guang Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Ke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhi-Juan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, China
| |
Collapse
|
6
|
Sandu I, Antohe I, Fleaca CT, Dumitrache F, Urzica I, Dumitru M. Shaping in the Third Direction: Colloidal Photonic Crystals with Quadratic Surfaces Self-Assembled by Hanging-Drop Method. Polymers (Basel) 2024; 16:1931. [PMID: 39000786 PMCID: PMC11243822 DOI: 10.3390/polym16131931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
High-quality, 3D-shaped, SiO2 colloidal photonic crystals (ellipsoids, hyperboloids, and others) were fabricated by self-assembly. They possess a quadratic surface and are wide-angle-independent, direction-dependent, diffractive reflection crystals. Their size varies between 1 and 5 mm and can be achieved as mechanical-resistant, free-standing, thick (hundreds of ordered layers) objects. High-quality, 3D-shaped, polystyrene inverse-opal photonic superstructures (highly similar to diatom frustules) were synthesized by using an inside infiltration method as wide-angle-independent, reflective diffraction objects. They possess multiple reflection bands given by their special architecture (a torus on the top of an ellipsoid) and by their different sized holes (384 nm and 264 nm). Our hanging-drop self-assembly approach uses setups which deform the shape of an ordinary spherical drop; thus, the colloidal self-assembly takes place on a non-axisymmetric liquid/air interface. The deformed drop surface is a kind of topological interface which changes its shape in time, remaining as a quality template for the self-assembly process. Three-dimensional-shaped colloidal photonic crystals might be used as devices for future spectrophotometers, aspheric or freeform diffracting mirrors, or metasurfaces for experiments regarding space-time curvature analogy.
Collapse
Affiliation(s)
- Ion Sandu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.S.); (I.A.); (C.T.F.); (F.D.); (I.U.)
| | - Iulia Antohe
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.S.); (I.A.); (C.T.F.); (F.D.); (I.U.)
- Romanian Academy of Scientists (AOSR), 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Claudiu Teodor Fleaca
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.S.); (I.A.); (C.T.F.); (F.D.); (I.U.)
| | - Florian Dumitrache
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.S.); (I.A.); (C.T.F.); (F.D.); (I.U.)
| | - Iuliana Urzica
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.S.); (I.A.); (C.T.F.); (F.D.); (I.U.)
| | - Marius Dumitru
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.S.); (I.A.); (C.T.F.); (F.D.); (I.U.)
| |
Collapse
|
7
|
Zhang Y, Zhang Y, Ding R, Zhang K, Guo H, Lin Y. Self-Assembled Nanocarrier Delivery Systems for Bioactive Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310838. [PMID: 38214694 DOI: 10.1002/smll.202310838] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Indexed: 01/13/2024]
Abstract
Although bioactive compounds (BCs) have many important functions, their applications are greatly limited due to their own defects. The development of nanocarriers (NCs) technology has gradually overcome the defects of BCs. NCs are equally important as BCs to some extent. Self-assembly (SA) methods to build NCs have many advantages than chemical methods, and SA has significant impact on the structure and function of NCs. However, the relationship among SA mechanism, structure, and function has not been given enough attention. Therefore, from the perspective of bottom-up building mechanism, the concept of SA-structure-function of NCs is emphasized to promote the development of SA-based NCs. First, the conditions and forces for occurring SA are introduced, and then the SA basis and molecular mechanism of protein, polysaccharide, and lipid are summarized. Then, varieties of the structures formed based on SA are introduced in detail. Finally, facing the defects of BCs and how to be well solved by NCs are also elaborated. This review attempts to describe the great significance of constructing artificial NCs to deliver BCs from the aspects of SA-structure-function, so as to promote the development of SA-based NCs and the wide application of BCs.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuning Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Rui Ding
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Kai Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
- Food Laboratory of Zhongyuan, Luohe, 462300, China
| |
Collapse
|
8
|
Hayashi M, Sumi T, Inooka Y, Hamatake H, Kawakita H, Ohto K, Morisada S. Effect of Particle-Substrate Interactions on Colloidal Layer Structure Prepared by Convective Self-Assembly Using Polyelectrolyte-Grafted Silica Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8493-8502. [PMID: 38602017 DOI: 10.1021/acs.langmuir.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Cationic and anionic polyelectrolytes, poly(vinylbenzyl trimethylammonium chloride) (PVBTA) and poly(sodium styrene sulfate) (PSSS), were grafted on the surface of the silica particles, respectively, and then these two types of polyelectrolyte-grafted silica particles were applied to the colloidal layer preparation by convective self-assembly (CSA) using hydrophilic or hydrophobic glass substrates to investigate the effect of the interactions between the particles and the substrate surface on the resultant layer structures. When the PVBTA-grafted silica particle (PVBTA-Si) was used, the colloidal monolayers with a non-close-packed (NCP) structure were formed on both hydrophilic and hydrophobic glass substrates, where the NCP colloidal layers on the hydrophobic glass substrate have a somewhat more ordered structure than those on the hydrophilic glass substrate. In the case of the PSSS-grafted silica particle (PSSS-Si), on the other hand, stripe patterns with close-packed (CP) colloidal layers were obtained on both types of the glass substrates. The number of layers of the stripes on the hydrophilic glass substrate was less than that on the hydrophobic glass substrate, while the spacing and width of the stripes on both substrates were similar to each other. The difference in the structures of the colloidal layers obtained here indicates that an attractive interaction, such as an electrostatic attraction and a hydrophobic interaction, between the particle and the substrate surface is necessary to achieve the NCP structure by the CSA process using polyelectrolyte-grafted silica particles.
Collapse
Affiliation(s)
- Miki Hayashi
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Takahiro Sumi
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Yaya Inooka
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Hiromu Hamatake
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Hidetaka Kawakita
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Keisuke Ohto
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Shintaro Morisada
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| |
Collapse
|
9
|
Jiang L, Mao X, Liu C, Guo X, Deng R, Zhu J. 2D superlattices via interfacial self-assembly of polymer-grafted Au nanoparticles. Chem Commun (Camb) 2023; 59:14223-14235. [PMID: 37962523 DOI: 10.1039/d3cc04587k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nanoparticle (NP) superlattices are periodic arrays of nanoscale building blocks. Because of the collective effect between functional NPs, NP superlattices can exhibit exciting new properties that are distinct from those of individual NPs or corresponding bulk materials. In particular, two-dimensional (2D) NP superlattices have attracted increasing attention due to their emerging applications in micro/opto-electronics, catalysis, sensing, and other fields. Among various preparation methods, evaporation-induced interfacial self-assembly has become the most popular method for preparing 2D NP superlattices because it is a simple, low-cost, and scalable process that can be widely applied to various NPs. Introducing soft ligands, such as polymers, can not only provide convenience in controlling the self-assembly process and tuning superlattice structures but also improve the properties of 2D NP superlattices. This feature article focuses on the methods of evaporation-induced self-assembly of polymer-grafted Au NPs into free-standing 2D NP superlattice films at air/liquid interfaces and 2D NP superlattice coatings on substrates, followed by studies on in situ tracking of the self-assembly evolution process through small-angle X-ray scattering. Their application in nano-floating gate memory devices is also included. Finally, the challenges and perspectives of this direction are discussed.
Collapse
Affiliation(s)
- Liangzhu Jiang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xi Mao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Changxu Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiaodan Guo
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Renhua Deng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
10
|
Ruzzi V, Baglioni J, Piazza R. Optothermal crystallization of hard spheres in an effective bidimensional geometry. J Chem Phys 2023; 159:154904. [PMID: 37850694 DOI: 10.1063/5.0169221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023] Open
Abstract
Using colloids effectively confined in two dimensions by a cell with a thickness comparable to the particle size, we investigate the nucleation and growth of crystallites induced by locally heating the solvent with a near-infrared laser beam. The particles, which are "thermophilic," move towards the laser spot solely because of thermophoresis with no convection effects, forming dense clusters whose structure is monitored using two order parameters that gauge the local density and the orientational ordering. We find that ordering takes place when the cluster reaches an average surface density that is still below the upper equilibrium limit for the fluid phase of hard disks, meaning that we do not detect any sign of a proper "two-stage" nucleation from a glass or a polymorphic crystal structure. The crystal obtained at late growth stage displays a remarkable uniformity with a negligible amount of defects, arguably because the incoming particles diffuse, bounce, and displace other particles before settling at the crystal interface. This "fluidization" of the outer crystal edge may resemble the surface enhanced mobility giving rise to ultra-stable glasses by physical vapor deposition.
Collapse
Affiliation(s)
- Vincenzo Ruzzi
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC) "Giulio Natta," Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Jacopo Baglioni
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC) "Giulio Natta," Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC) "Giulio Natta," Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|