1
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
2
|
Ashtariyan A, Mollania H, Annabestani N, Mollania N, Malayjerdi F, Dolatabadi M, Ghomi ER, Khoshsima A, Neisiany RE. Synergistic effect of Cydonia oblonga and its extracted silver nanoparticles for improving antioxidant and antibacterial activity of 3D printed alginate-based hydrogel as wound dressing. Int J Biol Macromol 2024; 276:133989. [PMID: 39084990 DOI: 10.1016/j.ijbiomac.2024.133989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
The current research studies the synergistic effect of Cydonia oblonga and its extracted nano bio‑silver as a natural and eco-friendly agent for the improvement of three-dimensional (3D)-printed alginate wound dressings. Therefore, Cydonia oblonga extract was first prepared and silver nanoparticles were extracted from it through a green and simple method. The Cydonia oblonga and its extracted bio-based nanoparticles were then added to 3D printing alginate-based ink. Subsequently, a 3D structural extrusion printer was employed to create the porous hydrogel-based wound dressings. The morphological investigation demonstrated that using the extraction method the bio-based silver nanoparticles were successfully prepared, having an average size of 17.95 ± 4.50 nm. The Cydonia oblonga extract showed comparable antioxidant activity to the commercial antioxidant and an excellent total phenol content. In addition, the results showed the combination of Cydonia oblonga extracts/silver nanoparticles significantly improved the antibacterial performance of alginate-based bioinks. In vivo, and in vitro studies confirmed their biocompatibility and significant efficacy in the treatment of burn wounds.
Collapse
Affiliation(s)
- Ali Ashtariyan
- Department of Materials Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Hamid Mollania
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Nafiseh Annabestani
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Nasrin Mollania
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 9617976487, Iran.
| | - Fateme Malayjerdi
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Mehraveh Dolatabadi
- Faculty of Petroleum and Chemical Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Ali Khoshsima
- Faculty of Petroleum and Chemical Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran.
| |
Collapse
|
3
|
Qi M, Liu Y, Wang Z, Yuan S, Li K, Zhang Q, Chen M, Wei L. Self-Healable Multifunctional Fibers via Thermal Drawing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400785. [PMID: 38682447 PMCID: PMC11200011 DOI: 10.1002/advs.202400785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Indexed: 05/01/2024]
Abstract
The development of soft electronics and soft fiber devices has significantly advanced flexible and wearable technology. However, they still face the risk of damage when exposed to sharp objects in real-life applications. Taking inspiration from nature, self-healable materials that can restore their physical properties after external damage offer a solution to this problem. Nevertheless, large-scale production of self-healable fibers is currently constrained. To address this limitation, this study leverages the thermal drawing technique to create elastic and stretchable self-healable thermoplastic polyurethane (STPU) fibers, enabling cost-effective mass production of such functional fibers. Furthermore, despite substantial research into the mechanisms of self-healable materials, quantifying their healing speed and time poses a persistent challenge. Thus, transmission spectra are employed as a monitoring tool to observe the real-time self-healing process, facilitating an in-depth investigation into the healing kinetics and efficiency. The versatility of the fabricated self-healable fiber extends to its ability to be doped with a wide range of functional materials, including dye molecules and magnetic microparticles, which enables modular assembly to develop distributed strain sensors and soft actuators. These achievements highlight the potential applications of self-healable fibers that seamlessly integrate with daily lives and open up new possibilities in various industries.
Collapse
Affiliation(s)
- Miao Qi
- College of Biomedical Engineering & Instrument ScienceKey Laboratory for Biomedical Engineering of Ministry of EducationZhejiang UniversityHangzhou310027China
- Zhejiang LabHangzhou311100China
| | - Yanting Liu
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Zhe Wang
- Key Laboratory of Bionic Engineering of Ministry of EducationJilin UniversityChangchun130022China
| | - Shixing Yuan
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Kaiwei Li
- Key Laboratory of Bionic Engineering of Ministry of EducationJilin UniversityChangchun130022China
| | - Qichong Zhang
- Suzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Mengxiao Chen
- College of Biomedical Engineering & Instrument ScienceKey Laboratory for Biomedical Engineering of Ministry of EducationZhejiang UniversityHangzhou310027China
- Zhejiang LabHangzhou311100China
| | - Lei Wei
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
4
|
Wang Y, Chai YQ, Cai J, Huang SS, Wang YF, Yuan SS, Wang JL, Shi KQ, Deng JJ. Human Adipose Tissue Lysate-Based Hydrogel for Lasting Immunomodulation to Effectively Improve Spinal Cord Injury Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304318. [PMID: 38018305 DOI: 10.1002/smll.202304318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/22/2023] [Indexed: 11/30/2023]
Abstract
The long-term inflammatory microenvironment is one of the main obstacles to inhibit acute spinal cord injury (SCI) repair. The natural adipose tissue-derived extracellular matrix hydrogel shows effective anti-inflammatory regulation because of its unique protein components. However, the rapid degradation rate and removal of functional proteins during the decellularization process impair the lasting anti-inflammation function of the adipose tissue-derived hydrogel. To address this problem, adipose tissue lysate provides an effective way for SCI repair due to its abundance of anti-inflammatory and nerve regeneration-related proteins. Thereby, human adipose tissue lysate-based hydrogel (HATLH) with an appropriate degradation rate is developed, which aims to in situ long-term recruit and induce anti-inflammatory M2 macrophages through sustainedly released proteins. HATLH can recruit and polarize M2 macrophages while inhibiting pro-inflammatory M1 macrophages regardless of human or mouse-originated. The axonal growth of neuronal cells also can be effectively improved by HATLH and HATLH-induced M2 macrophages. In vivo experiments reveal that HATLH promotes endogenous M2 macrophages infiltration in large numbers (3.5 × 105/100 µL hydrogel) and maintains a long duration for over a month. In a mouse SCI model, HATLH significantly inhibits local inflammatory response, improves neuron and oligodendrocyte differentiation, enhances axonal growth and remyelination, as well as accelerates neurological function restoration.
Collapse
Affiliation(s)
- Yu Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, 325000, China
| | - Ying-Qian Chai
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Jie Cai
- Department of Orthopedics, Xiaoshan Hospital Affiliated to Wenzhou Medical University, Hangzhou, Zhejiang, 310000, China
| | - Shan-Shan Huang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Ye-Feng Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Shan-Shan Yuan
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Ji-Long Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Ke-Qing Shi
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Jun-Jie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
5
|
Tan H, Sun L, Huang H, Zhang L, Neisiany RE, Ma X, You Z. Continuous Melt Spinning of Adaptable Covalently Cross-Linked Self-Healing Ionogel Fibers for Multi-Functional Ionotronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310020. [PMID: 38100738 DOI: 10.1002/adma.202310020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Indexed: 12/17/2023]
Abstract
Stretchable conductive fibers play key roles in electronic textiles, which have substantial improvements in terms of flexibility, breathability, and comfort. Compared to most existing electron-conductive fibers, ion-conductive fibers are usually soft, stretchable, and transparent, leading to increasing attention. However, the integration of desirable functions including high transparency, stretchability, conductivity, solvent resistance, self-healing ability, processability, and recyclability remains a challenge to be addressed. Herein, a new molecular strategy based on dynamic covalent cross-linking networks is developed to enable continuous melt spinning of the ionogel fiber with the aforementioned properties. As a proof of concept, adaptable covalently cross-linked ionogel fibers based on dimethylglyoximeurethane (DOU) groups (DOU-IG fiber) are prepared. The resultant DOU-IG fiber exhibited high transparency (>93%), tensile strength (0.76 MPa), stretchability (784%), and solvent resistance. Owing to the dynamic of DOU groups, the DOU-IG fiber shows high healing performance using near-infrared light. Taking advantage of DOU-IG fibers, multifunctional ionotronics with the integration of several desirable functionalities including sensor, triboelectric nanogenerator, and electroluminescent display are fabricated and used for motion monitoring, energy harvesting, and human-machine interaction. It is believed that these DOU-IG fibers are promising for fabricating the next generation of electronic textiles and other wearable electronics.
Collapse
Affiliation(s)
- Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen, 518038, China
| | - Lijie Sun
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen, 518038, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, China
| | - Hongfei Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, China
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen, 518038, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland
| | - Xiaopeng Ma
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen, 518038, China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, China
| |
Collapse
|