1
|
Xu T, Cheng H, Pei H, Wang J, Shi Y, Zhang X, Huang D. Emodin Enhanced Microwave-Responsive Heterojunction with Powerful Bactericidal Capacity and Immunoregulation for Curing Bacteria-Infected Osteomyelitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409979. [PMID: 39604818 PMCID: PMC11744657 DOI: 10.1002/advs.202409979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Eradication of osteomyelitis caused by bacterial infections is still a major challenge. Microwave therapy has the inherent advantage of deep penetration in curing deep tissue infections. However, the antibacterial efficiency of sensitizers is limited by the weak energy of microwaves. Here, a hybrid heterojunction system (Fe3O4/CuS/Emo) is designed for curing bacterially infected osteomyelitis. As an enhanced microwave sensitizer, it shows supernormal microwave response ability. Specifically, Fe3O4 acts as a matrix to mediate magnetic loss. After CuS loading, the heterogeneous interface forms induce significant interfacial polarization, which increasing dielectric loss. On the basis of the heterojunction formed by the two semiconductors, emodin is innovatively introduced to modify it. This integration not only accelerates the movement of charge carriers but also enhances polarization loss due to the numerous functional groups present on the surface. This further optimizes the microwave thermal and catalytic response. In addition, the unique anti-inflammatory properties of emodin confer the ability of hybrid heterojunction to regulate the immune microenvironment. In vivo studies reveal that heterojunction modified by emodin programmed elimination of bacteria and regulation of the immune microenvironment. It offers a revolutionary approach to the treatment of bacterial osteomyelitis.
Collapse
Affiliation(s)
- Tao Xu
- Department of Biomedical EngineeringResearch Center for Nano‐biomaterials & Regenerative MedicineCollege of Artificial IntelligenceTaiyuan University of TechnologyTaiyuan030024China
| | - Hao Cheng
- Department of Biomedical EngineeringResearch Center for Nano‐biomaterials & Regenerative MedicineCollege of Artificial IntelligenceTaiyuan University of TechnologyTaiyuan030024China
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Hailiang Pei
- Department of Biomedical EngineeringResearch Center for Nano‐biomaterials & Regenerative MedicineCollege of Artificial IntelligenceTaiyuan University of TechnologyTaiyuan030024China
| | - Jiameng Wang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Yiwei Shi
- NHC Key Laboratory of PneumoconiosisDepartment of Pulmonary and Critical Care MedicineFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Xiangyu Zhang
- Department of Biomedical EngineeringResearch Center for Nano‐biomaterials & Regenerative MedicineCollege of Artificial IntelligenceTaiyuan University of TechnologyTaiyuan030024China
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Di Huang
- Department of Biomedical EngineeringResearch Center for Nano‐biomaterials & Regenerative MedicineCollege of Artificial IntelligenceTaiyuan University of TechnologyTaiyuan030024China
| |
Collapse
|
2
|
Liao Y, Li B, Chen H, Ma Y, Wang F, Huang L, Shen B, Song H, Yue P. Stimuli-responsive mesoporous silica nanoplatforms for smart antibacterial therapies: From single to combination strategies. J Control Release 2024; 378:60-91. [PMID: 39615754 DOI: 10.1016/j.jconrel.2024.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
The demand for new antibacterial therapies is urgent and crucial in the clinical setting because of the growing degree of antibiotic resistance and the limits of conventional antibacterial therapies. Stimuli- responsive nanoplatforms, are sensitive to endogenous or exogenous stimulus (pH, temperature, light, and magnetic fields, etc.) which activate cargo release locally and on-demand, hold great potential in developing next generation personalized precision medicine. For instance, pH-sensitive nanoplatforms can selectively release antibacterial agents in the acidic environment of infection sites. To achieve the stimuli-responsive delivery, mesoporous silica nanoplatforms (MSNs) have demonstrated as prospective candidates for efficient cargo loading and controlled release through strategies such as tunable pore engineering, versatile surface modification/coating, and tailored framework composition. Furthermore, aiming for more precise delivery of MSNs, current research interests are increasingly shifting from single-stimuli antibacterial strategy to integrated strategy that combine multiple-stimulus. In this review, we briefly discuss the microenvironment of bacterial infections and provide a comprehensive summary of current stimuli-responsive strategies, and associated materials design principles of stimuli-responsive mesoporous silica-based smart nanoplatforms (SRMSNs). Additionally, integrative antibacterial strategies with synergistic effects, combining chemodynamic, photodynamic, photothermal, sonodynamic and gas therapies, have also been elaborated. Present research advances and limitations of SRMSNs-based antibacterial therapies, such as limited biodegradability and potential cytotoxicity, have been overviewed with future outlooks presented. This review aims to inspire and guide future research in developing novel antibacterial strategies with integrative solutions.
Collapse
Affiliation(s)
- Yan Liao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Biao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hongxin Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yueqin Ma
- Department of Pharmaceutics, 908th Hospital of Joint Logistics Support Force of PLA, Nanchang 330000, China
| | - Fengxia Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Lizhen Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 20139, USA.
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
3
|
Liang Y, Zhang J, Hu J, Chen P, Xia J, He J, Wu S, Li J, Wang J. Oxygen vacancy formation strengthened microwave catalysis of Zn-Zr solid solution for antibiotic-free therapy strategies of bacteria-infected osteomyelitis. Free Radic Biol Med 2024; 222:122-129. [PMID: 38848785 DOI: 10.1016/j.freeradbiomed.2024.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Osteomyelitis, a grave deep tissue infection primarily caused by Staphylococcus aureus, results in serious complications such as abscesses and sepsis. With the incidence from open fractures exceeding 30 % and prevalent antibiotic resistance due to extensive treatment regimens, there's an urgent need for innovative, antibiotic-free strategies. Photothermal therapy (PTT) and photodynamic therapy (PDT) renowned for generating localized reactive oxygen species (ROS), face limitations in penetration depth. To overcome this, our method combines the deep penetration attributes of medical microwaves (MW) with the synergistic effects of the ZnO/ZrO2 solid solution. Comprehensive in vitro and in vivo evaluations showcased the solid-solution's potent antibacterial efficacy and biocompatibility. The ZnO/ZrO2 solid solution, especially in a 7:3 M ratio, manifests superior microstructural characteristics, optimizing MW-assisted therapy. Our findings highlight the potential of this integrated strategy as a promising avenue in osteomyelitis management.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China
| | - Jiale Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China
| | - Jinlong Hu
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China
| | - Pengtao Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China
| | - Junyu Xia
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jinshan He
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China
| | - Shuqing Wu
- Sleep Medicine Center, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China; Department of Respiratory and Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China.
| | - Jie Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Jingcheng Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China.
| |
Collapse
|
4
|
Chen Y, Wei S, Li R, Xie W, Yang H. Bioclay Enzyme with Bimetal Synergistic Sterilization and Infectious Wound Regeneration. NANO LETTERS 2024; 24:8046-8054. [PMID: 38912748 DOI: 10.1021/acs.nanolett.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Bacteria invasion is the main factor hindering the wound-healing process. However, current antibacterial therapies inevitably face complex challenges, such as the abuse of antibiotics or severe inflammation during treatment. Here, a drug-free bioclay enzyme (Bio-Clayzyme) consisting of Fe2+-tannic acid (TA) network-coated kaolinite nanoclay and glucose oxidase (GOx) was reported to destroy harmful bacteria via bimetal antibacterial therapy. At the wound site, Bio-Clayzyme was found to enhance the generation of toxic hydroxyl radicals for sterilization via cascade catalysis of GOx and Fe2+-mediated peroxidase mimetic activity. Specifically, the acidic characteristics of the infection microenvironment accelerated the release of Al3+ from kaolinite, which further led to bacterial membrane damage and amplified the antibacterial toxicity of Fe2+. Besides, Bio-Clayzyme also performed hemostasis and anti-inflammatory functions inherited from Kaol and TA. By the combination of hemostasis and anti-inflammatory and bimetal synergistic sterilization, Bio-Clayzyme achieves efficient healing of infected wounds, providing a revolutionary approach for infectious wound regeneration.
Collapse
Affiliation(s)
- Ying Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Shiqi Wei
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Rui Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Weimin Xie
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Liao S, Wu S, Mao C, Wang C, Cui Z, Zheng Y, Li Z, Jiang H, Zhu S, Liu X. Electron Aggregation and Oxygen Fixation Reinforced Microwave Dynamic and Thermal Therapy for Effective Treatment of MRSA-Induced Osteomyelitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312280. [PMID: 38312094 DOI: 10.1002/smll.202312280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Indexed: 02/06/2024]
Abstract
Antibiotics are frequently used to clinically treat osteomyelitis caused by bacterial infections. However, extended antibiotic use may result in drug resistance, which can be life threatening. Here, a heterojunction comprising Fe2O3/Fe3S4 magnetic composite is constructed to achieve short-term and efficient treat osteomyelitis caused by methicillin-resistant Staphylococcus aureus (MRSA). The Fe2O3/Fe3S4 composite exhibits powerful microwave (MW) absorption properties, thereby effectively converting incident electromagnetic energy into thermal energy. Density functional theory calculations demonstrate that Fe2O3/Fe3S4 possesses significant charge accumulation and oxygen-fixing capacity at the heterogeneous interface, which provides more active sites and oxygen sources for trapping electromagnetic hotspots. The finite element analysis indicates that Fe2O3/Fe3S4 displays a larger electromagnetism field enhancement parameter than Fe2O3 owing to a significant increase in electromagnetic hotspots. These hotspots contribute to charge differential accumulation and depletion motions at the interface, thereby augmenting the release of free electrons that subsequently combine with the oxygen adsorbed by Fe2O3/Fe3S4 to generate reactive oxygen species (ROS) and heat. This research, which achieves extraordinary bacterial eradication through the synergistic effect of microwave thermal therapy (MWTT) and microwave dynamic therapy (MDT), presents a novel strategy for treating deep-tissue bacterial infections.
Collapse
Affiliation(s)
- Shasha Liao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| |
Collapse
|
6
|
Li B, Zhu H, Lv Y, Wang C, Wu S, Zhu S, Zheng Y, Jiang H, Zhang Y, Li Z, Cui Z, Liu X. Metal Ion Coordination Improves Graphite Nitride Carbon Microwave Therapy in Antibacterial and Osteomyelitis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303484. [PMID: 37485572 DOI: 10.1002/smll.202303484] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Indexed: 07/25/2023]
Abstract
The ability to effectively treat deep bacterial infections while promoting osteogenesis is the biggest treatment demand for diseases such as osteomyelitis. Microwave therapy is widely studied due to its remarkable ability to penetrate deep tissue. This paper focuses on the development of a microwave-responsive system, namely, a zinc ion (Zn2+ ) doped graphite carbon nitride (CN) system (BZCN), achieved through two high-temperature burning processes. By subjecting composite materials to microwave irradiation, an impressive 99.81% eradication of Staphylococcus aureus is observed within 15 min. Moreover, this treatment enhances the growth of bone marrow stromal cells. The Zn2+ doping effectively alters the electronic structure of CN, resulting in the generation of a substantial number of free electrons on the material's surface. Under microwave stimulation, sodium ions collide and ionize with the free electrons generated by BZCN, generating a large amount of energy, which reacts with water and oxygen, producing reactive oxygen species. In addition, Zn2+ doping improves the conductivity of CN and increases the number of unsaturated electrons. Under microwave irradiation, polar molecules undergo movement and generate frictional heat. Finally, the released Zn2+ promotes macrophages to polarize toward the M2 phenotype, which is beneficial for tibial repair.
Collapse
Affiliation(s)
- Bo Li
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Huiping Zhu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yuelin Lv
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, P. R. China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Yi-he-yuan Road 5#, Beijing, 100871, P. R. China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, P. R. China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yi-he-yuan Road 5#, Beijing, 100871, P. R. China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, P. R. China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, P. R. China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, P. R. China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, P. R. China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, P. R. China
| |
Collapse
|