1
|
Chambers MI, Beyramysoltan S, Garosi B, Musah RA. Combined ambient ionization mass spectrometric and chemometric approach for the differentiation of hemp and marijuana varieties of Cannabis sativa. J Cannabis Res 2023; 5:5. [PMID: 36804055 PMCID: PMC9938564 DOI: 10.1186/s42238-023-00173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/30/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Hemp and marijuana are the two major varieties of Cannabis sativa. While both contain Δ9-tetrahydrocannabinol (THC), the primary psychoactive component of C. sativa, they differ in the amount of THC that they contain. Presently, U.S. federal laws stipulate that C. sativa containing greater than 0.3% THC is classified as marijuana, while plant material that contains less than or equal to 0.3% THC is hemp. Current methods to determine THC content are chromatography-based, which requires extensive sample preparation to render the materials into extracts suitable for sample injection, for complete separation and differentiation of THC from all other analytes present. This can create problems for forensic laboratories due to the increased workload associated with the need to analyze and quantify THC in all C. sativa materials. METHOD The work presented herein combines direct analysis in real time-high-resolution mass spectrometry (DART-HRMS) and advanced chemometrics to differentiate hemp and marijuana plant materials. Samples were obtained from several sources (e.g., commercial vendors, DEA-registered suppliers, and the recreational Cannabis market). DART-HRMS enabled the interrogation of plant materials with no sample pretreatment. Advanced multivariate data analysis approaches, including random forest and principal component analysis (PCA), were used to optimally differentiate these two varieties with a high level of accuracy. RESULTS When PCA was applied to the hemp and marijuana data, distinct clustering that enabled their differentiation was observed. Furthermore, within the marijuana class, subclusters between recreational and DEA-supplied marijuana samples were observed. A separate investigation using the silhouette width index to determine the optimal number of clusters for the marijuana and hemp data revealed this number to be two. Internal validation of the model using random forest demonstrated an accuracy of 98%, while external validation samples were classified with 100% accuracy. DISCUSSION The results show that the developed approach would significantly aid in the analysis and differentiation of C. sativa plant materials prior to launching painstaking confirmatory testing using chromatography. However, to maintain and/or enhance the accuracy of the prediction model and keep it from becoming outdated, it will be necessary to continue to expand it to include mass spectral data representative of emerging hemp and marijuana strains/cultivars.
Collapse
Affiliation(s)
- Megan I. Chambers
- grid.265850.c0000 0001 2151 7947Department of Chemistry, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY 12222 USA
| | - Samira Beyramysoltan
- grid.265850.c0000 0001 2151 7947Department of Chemistry, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY 12222 USA
| | - Benedetta Garosi
- grid.265850.c0000 0001 2151 7947Department of Chemistry, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY 12222 USA
| | - Rabi A. Musah
- grid.265850.c0000 0001 2151 7947Department of Chemistry, University at Albany, State University of New York (SUNY), 1400 Washington Avenue, Albany, NY 12222 USA
| |
Collapse
|
2
|
Bell DC, Boehm RC, Feldhausen J, Heyne JS. A Data Set Comparison Method Using Noise Statistics Applied to VUV Spectrum Match Determinations. Anal Chem 2022; 94:14861-14868. [PMID: 36264707 DOI: 10.1021/acs.analchem.2c01931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been demonstrated that a pair of spectra exhibiting a coefficient of determination (R2) as low as 0.976 can originate from the same chemical species in one example, while a different pair of spectra exhibiting an R2 up to 0.9997 can originate from different chemical species. The R2 between spectra overlays depends on the signal-to-noise ratio, while the residual between any two spectra should look like noise only when the two spectra originate from the same chemical species. Numerical characteristics of the residual between two high-resolution spectra are invaluable toward the definitive elimination of many plausible matches of reference spectra to the sample spectra of analytes eluted from two-dimensional gas chromatography. Additionally, numerical characteristics beyond R2 facilitate a logical ranking of all plausible matches, making positive identification of a single-component analyte possible provided a reference spectrum exists for all plausible matches. Specifically, the experimental background noise is shown to follow a Gaussian distribution at all wavelengths, and a method is described to normalize the data such that the numerically adjusted noise distributions are independent of wavelength. The differences between matching spectra are further shown to exhibit numerical characteristics consistent with the background noise's Gaussian distribution, common to all wavelengths. Seven criteria are described for judging the similarity between spectra: R2 between the two spectra, R2 of a Q-Q plot with one axis being ideal Gaussian quantiles and the other axis being the distribution of the numerically adjusted residual quantiles, the maximum count of consecutive (by wavelength) signs in the residual, and the first four moments of the residuals. One exemplar application of the methodology is a definitive match of n-undecane, n-dodecane, and n-tridecane sample spectra to their corresponding reference spectrum, which is among the most challenging set of species within the volatility range of jet fuel to differentiate by spectral methods. While this example is a significant stress test of the approach, the utility of the methodology generally is in the subtle math and transparent criteria that unambiguously identify mismatches because the distributions of residuals between mismatching spectra are very clearly not Gaussian and have a high consecutive sign count, even in cases where the R2 between the compared spectra is ambiguous.
Collapse
Affiliation(s)
- David C Bell
- Department of Mechanical Engineering, University of Dayton, 300 College Park, Dayton, Ohio45469, United States
| | - Randall C Boehm
- Department of Mechanical Engineering, University of Dayton, 300 College Park, Dayton, Ohio45469, United States
| | - John Feldhausen
- Department of Mechanical Engineering, University of Dayton, 300 College Park, Dayton, Ohio45469, United States
| | - Joshua S Heyne
- Department of Mechanical Engineering, University of Dayton, 300 College Park, Dayton, Ohio45469, United States
| |
Collapse
|
3
|
Aslani S, Armstrong DW. High information spectroscopic detection techniques for gas chromatography. J Chromatogr A 2022; 1676:463255. [PMID: 35797858 DOI: 10.1016/j.chroma.2022.463255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 01/14/2023]
Abstract
Gas chromatography has always been a simple and widely used technique for the separation of volatile compounds and their quantitation. However, the common detectors used with this technique are mostly universal and do not provide any specific qualitative information. There have been some attempts to combine the separation power of GC with the qualitative capabilities of "high-information" spectroscopic techniques including infrared spectroscopy, nuclear magnetic resonance spectroscopy, molecular rotational resonance spectroscopy, and vacuum ultraviolet spectroscopy. Some of these hyphenations have proven to be quite successful while others were less so. The history of such attempts, up to the most recent studies in this area, are discussed. Most recently, the hyphenation of GC with molecular rotational resonance spectroscopy which provides promising results and is a newly developed technique is reviewed and compared to previous high-information spectroscopic detection approaches. The history, description and features of each method along with their applications and challenges are discussed.
Collapse
Affiliation(s)
- Saba Aslani
- Department of Chemistry and Biochemistry, University of Arlington, 700 Planetarium Place, Arlington, TX 76019, United States
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Arlington, 700 Planetarium Place, Arlington, TX 76019, United States.
| |
Collapse
|
4
|
Salehi A, Puchalski K, Shokoohinia Y, Zolfaghari B, Asgary S. Differentiating Cannabis Products: Drugs, Food, and Supplements. Front Pharmacol 2022; 13:906038. [PMID: 35833025 PMCID: PMC9271575 DOI: 10.3389/fphar.2022.906038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
“Hemp” refers to non-intoxicating, low delta-9 tetrahydrocannabinol (Δ9-THC) cultivars of Cannabis sativa L. “Marijuana” refers to cultivars with high levels of Δ9-THC, the primary psychoactive cannabinoid found in the plant and a federally controlled substance used for both recreational and therapeutic purposes. Although marijuana and hemp belong to the same genus and species, they differ in terms of chemical and genetic composition, production practices, product uses, and regulatory status. Hemp seed and hemp seed oil have been shown to have valuable nutritional capacity. Cannabidiol (CBD), a non-intoxicating phytocannabinoid with a wide therapeutic index and acceptable side effect profile, has demonstrated high medicinal potential in some conditions. Several countries and states have facilitated the use of THC-dominant medical cannabis for certain conditions, while other countries continue to ban all forms of cannabis regardless of cannabinoid profile or low psychoactive potential. Today, differentiating between hemp and marijuana in the laboratory is no longer a difficult process. Certain thin layer chromatography (TLC) methods can rapidly screen for cannabinoids, and several gas and liquid chromatography techniques have been developed for precise quantification of phytocannabinoids in plant extracts and biological samples. Geographic regulations and testing guidelines for cannabis continue to evolve. As they are improved and clarified, we can better employ the appropriate applications of this uniquely versatile plant from an informed scientific perspective.
Collapse
Affiliation(s)
- Arash Salehi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Keely Puchalski
- Ric Scalzo Institute for Botanical Research, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Yalda Shokoohinia
- Ric Scalzo Institute for Botanical Research, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Behzad Zolfaghari
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- *Correspondence: Sedigheh Asgary,
| |
Collapse
|
5
|
Reavis M, Goodpaster J. Quantitative analysis of smokeless powder particles in post‐blast debris via gas chromatography/vacuum ultraviolet spectroscopy (
GC
/
VUV
). J Forensic Sci 2022; 67:1431-1440. [PMID: 35368092 PMCID: PMC9322668 DOI: 10.1111/1556-4029.15037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/05/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
Forensic analysis of smokeless powder particles recovered from the debris of an improvised explosive device can provide information about the type of smokeless powder used and can aid investigation efforts. In this study, quantitative methods were used to yield information about the difference in the chemical composition of the particles pre‐ and post‐blast. The technique, gas chromatography/vacuum ultraviolet spectroscopy (GC/VUV), was able to quantify nitroglycerin, 2,4‐dinitrotoluene, diphenylamine, ethyl centralite, and di‐n‐butyl phthalate in pre‐ and post‐blast smokeless powder particles using heptadecane as an internal standard. Post‐blast debris was obtained via controlled explosions with assistance from the Indiana State Police Bomb Squad. Two galvanized steel and two polyvinyl chloride pipe bombs were assembled. Two devices contained single‐base smokeless powder and two contained double‐base smokeless powder. 2,4‐dinitrotoluene and diphenylamine were successfully quantified in the single‐base smokeless powder post‐blast debris while nitroglycerin, diphenylamine, and ethyl centralite were successfully quantified in the double‐base smokeless powder post‐blast debris. Compounds were detected at concentrations as low as 9 μg of 2,4‐dinitrotoluene per mg, <3 μg of diphenylamine per mg, 131 μg of nitroglycerin per mg, and <3 μg of ethyl centralite per mg. Concentration changes between pre‐ and post‐blast smokeless powder particles were determined as well as microscopic differences between pre‐ and post‐blast debris for both smokeless powders in all devices. To our knowledge, this is the first use of GC/VUV for the quantification of explosives.
Collapse
Affiliation(s)
- Madison Reavis
- Forensic and Investigative Sciences Department Indiana University—Purdue University Indianapolis Indianapolis Indiana USA
| | - John Goodpaster
- Forensic and Investigative Sciences Department Indiana University—Purdue University Indianapolis Indianapolis Indiana USA
| |
Collapse
|
6
|
Stefkov G, Cvetkovikj Karanfilova I, Stoilkovska Gjorgievska V, Trajkovska A, Geskovski N, Karapandzova M, Kulevanova S. Analytical Techniques for Phytocannabinoid Profiling of Cannabis and Cannabis-Based Products-A Comprehensive Review. Molecules 2022; 27:975. [PMID: 35164240 PMCID: PMC8838193 DOI: 10.3390/molecules27030975] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cannabis is gaining increasing attention due to the high pharmacological potential and updated legislation authorizing multiple uses. The development of time- and cost-efficient analytical methods is of crucial importance for phytocannabinoid profiling. This review aims to capture the versatility of analytical methods for phytocannabinoid profiling of cannabis and cannabis-based products in the past four decades (1980-2021). The thorough overview of more than 220 scientific papers reporting different analytical techniques for phytocannabinoid profiling points out their respective advantages and drawbacks in terms of their complexity, duration, selectivity, sensitivity and robustness for their specific application, along with the most widely used sample preparation strategies. In particular, chromatographic and spectroscopic methods, are presented and discussed. Acquired knowledge of phytocannabinoid profile became extremely relevant and further enhanced chemotaxonomic classification, cultivation set-ups examination, association of medical and adverse health effects with potency and/or interplay of certain phytocannabinoids and other active constituents, quality control (QC), and stability studies, as well as development and harmonization of global quality standards. Further improvement in phytocannabinoid profiling should be focused on untargeted analysis using orthogonal analytical methods, which, joined with cheminformatics approaches for compound identification and MSLs, would lead to the identification of a multitude of new phytocannabinoids.
Collapse
Affiliation(s)
- Gjoshe Stefkov
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Ivana Cvetkovikj Karanfilova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Veronika Stoilkovska Gjorgievska
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Ana Trajkovska
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia;
| | - Marija Karapandzova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Svetlana Kulevanova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| |
Collapse
|
7
|
Applicability of liquid and supercritical fluid chromatographic separation techniques with diode array ultraviolet detection for forensic analysis. Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Kranenburg RF, Lukken CK, Schoenmakers PJ, van Asten AC. Spotting isomer mixtures in forensic illicit drug casework with GC-VUV using automated coelution detection and spectral deconvolution. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122675. [PMID: 33848800 DOI: 10.1016/j.jchromb.2021.122675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/27/2023]
Abstract
Analysis of isomeric mixtures is a significant analytical challenge. In the forensic field, for example, over 1000 new psychoactive substances (NPSs), comprising of many closely related and often isomeric varieties, entered the drugs-of-abuse market within the last decade. Unambiguous identification of the isomeric form requires advanced spectroscopic techniques, such as GC-Vacuum Ultraviolet Spectroscopy (GC-VUV). The continuous development of NPSs makes the appearance of a novel compound in case samples a realistic scenario. While several analytical solutions have been presented recently to confidently distinguish NPS isomers, the presence of multiple isomers in a single drug sample is typically not considered. Due to their structural similarities it is possible that a novel NPS coelutes with a known isomer and thus remains undetected. This study investigates the capabilities of VUV spectral deconvolution for peak detection and identification in incompletely resolved drug mixtures. To mimic worst case scenarios, severe coelution was deliberately induced at elevated GC temperatures. The deconvolution software was nevertheless able to correctly detect both substances, even in case of near-identical VUV spectra at almost full coelution. As a next step, spectra were subsequently removed from the reference library to simulate the scenario in which a novel substance was encountered for the first time in forensic case work. However, also in this situation the deconvolution software still detected the coelution. This work shows that a VUV library match score below 0.998 may serve as a warning that a novel substance may be present in a street sample.
Collapse
Affiliation(s)
- Ruben F Kranenburg
- Dutch National Police, Unit Amsterdam, Forensic Laboratory, Kabelweg 25, Amsterdam 1014 BA, the Netherlands; Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, Amsterdam 1090 GD, the Netherlands.
| | - Chris K Lukken
- Dutch National Police, Unit Amsterdam, Forensic Laboratory, Kabelweg 25, Amsterdam 1014 BA, the Netherlands; Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, Amsterdam 1090 GD, the Netherlands
| | - Peter J Schoenmakers
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, Amsterdam 1090 GD, the Netherlands
| | - Arian C van Asten
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, Amsterdam 1090 GD, the Netherlands; Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, PO Box 94157, Amsterdam 1090 GD, the Netherlands
| |
Collapse
|
9
|
Li J, Zhang Y, Zhou Y, Feng XS. Cannabinoids: Recent Updates on Public Perception, Adverse Reactions, Pharmacokinetics, Pretreatment Methods and Their Analysis Methods. Crit Rev Anal Chem 2021; 52:1197-1222. [PMID: 33557608 DOI: 10.1080/10408347.2020.1864718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cannabinoids (CBDs) have been traditionally used as a folk medicine. Recently, they have been found to exhibit a high pharmacological potential. However, they are addicted and are often abused by drug users, thereby, becoming a threat to public safety. CBDs and their metabolites are usually found in trace levels in plants or in biological matrices and, are therefore not easy to be detected. Advances have been made toward accurately analyzing CBDs in plants or in biological matrices. This review aims at elucidating on the consumption of CBDs as well as its adverse effects and to provide a comprehensive overview of CBD pretreatment and detection methods. Moreover, novel pretreatment methods such as microextraction, Quick Easy Cheap Effective Rugged Safe and online technology as well as novel analytic methods such as ion-mobility mass spectrometry, application of high resolution mass spectrometry in nontarget screening are summarized. In addition, we discuss and compare the strengths and weaknesses of different methods and suggest their future prospect.
Collapse
Affiliation(s)
- Jie Li
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Qiu C, Asgari P, Mao XJ, Jeon J, Schug KA. Gas chromatography-vacuum ultraviolet spectroscopic analysis of organosilanes. Talanta 2021; 223:121781. [PMID: 33298286 DOI: 10.1016/j.talanta.2020.121781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023]
Abstract
Organosilanes are used in a broad range of industrial, cosmetic, and personal care products. They serve as bridges between inorganic or organic substrates and organic/polymeric matrices. They are also versatile intermediates and can be used for a variety of synthetic applications. They do not exist naturally and have to be synthesized. Evaluation of intermediates and products resulting from the synthesis processes of organosilanes can be challenging. In this study, gas chromatography with vacuum ultraviolet spectroscopic detection (VUV) was used to analyze Si-containing compounds that are commercially available or were synthetically prepared. VUV measures full scan absorption in the range of 120-240 nm, a region that provides unique absorption signatures for chemical compounds. VUV absorption spectra of organosilanes showed rich and featured characteristics in this wavelength range. Theoretical computations of VUV absorption spectra based on time-dependent density functional theory were also explored as a complementary tool for identification. In addition, the synthesis process of isomeric benzodioxasiline compounds (ortho-, meta-, and para-) was monitored by GC-VUV. It was demonstrated that GC-VUV can be used for easy and rapid differentiation of organosilanes, including structural isomers.
Collapse
Affiliation(s)
- Changling Qiu
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Parham Asgari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States
| | - X James Mao
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Junha Jeon
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, United States.
| |
Collapse
|
11
|
Tanen JL, Lurie IS, Marginean I. Gas chromatography with dual cold electron ionization mass spectrometry and vacuum ultraviolet detection for the analysis of phenylethylamine analogues. Forensic Chem 2020. [DOI: 10.1016/j.forc.2020.100281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Cruse CA, Pu J, Goodpaster JV. Identifying Thermal Decomposition Products of Nitrate Ester Explosives Using Gas Chromatography-Vacuum Ultraviolet Spectroscopy: An Experimental and Computational Study. APPLIED SPECTROSCOPY 2020; 74:1486-1495. [PMID: 32192365 DOI: 10.1177/0003702820915506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Analysis of nitrate ester explosives (e.g., nitroglycerine) using gas chromatography-vacuum ultraviolet spectroscopy (GC-VUV) results in their thermal decomposition into nitric oxide, water, carbon monoxide, oxygen, and formaldehyde. These decomposition products exhibit highly structured spectra in the VUV that is not seen in larger molecules. Computational analysis using time-dependent density functional theory (TDDFT) was utilized to investigate the excited states and vibronic transitions of these decomposition products. The experimental and computational results are compared with those in previous literature using synchrotron spectroscopy, electron energy loss spectroscopy (EELS), photoabsorption spectroscopy, and other computational excited state methods. It was determined that a benchtop GC-VUV detector gives comparable results to those previously reported, and TDDFT could predict vibronic spacing and model molecular orbital diagrams.
Collapse
Affiliation(s)
- Courtney A Cruse
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, USA
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, USA
| | - John V Goodpaster
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, USA
| |
Collapse
|
13
|
Pourseyed Lazarjani M, Torres S, Hooker T, Fowlie C, Young O, Seyfoddin A. Methods for quantification of cannabinoids: a narrative review. J Cannabis Res 2020; 2:35. [PMID: 33526084 PMCID: PMC7819317 DOI: 10.1186/s42238-020-00040-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 09/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Around 144 cannabinoids have been identified in cannabis plant, among them tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most prominent ones. Because of the legal restrictions on cannabis in many countries, it is difficult to obtain standards to use in research; nonetheless, it is important to develop a cannabinoid quantification technique with pharmaceutical applications for quality control of future therapeutic cannabinoids. METHOD To find relevant articles for this narrative review paper, a combination of keywords such as medicinal cannabis, analytical, quantification and cannabinoids were searched for in PubMed, EMBASE, MEDLINE, Google Scholar and Cochrane Library (Wiley) databases. RESULTS The most common cannabinoid quantification techniques include gas chromatography (GC) and high-performance liquid chromatography (HPLC). GC is often used in conjunction with mass spectrometry (MS) or flame ionization detection (FID). The major advantage of GC is terpenes quantification however, for evaluating acidic cannabinoids it needs to be derivatised. The main advantage of HPLC is the ability to quantify both acidic and neutral forms of cannabinoids without derivatisation which is often with MS or ultraviolet (UV) detectors. CONCLUSION Based on the information presented in this review, the ideal cannabinoid quantification method is HPLC- MS/MS for the cannabinoids.
Collapse
Affiliation(s)
- Masoumeh Pourseyed Lazarjani
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Stephanie Torres
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.,Chapman University, Orange, California, USA
| | | | | | - Owen Young
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Ali Seyfoddin
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
14
|
Linciano P, Citti C, Luongo L, Belardo C, Maione S, Vandelli MA, Forni F, Gigli G, Laganà A, Montone CM, Cannazza G. Isolation of a High-Affinity Cannabinoid for the Human CB1 Receptor from a Medicinal Cannabis sativa Variety: Δ 9-Tetrahydrocannabutol, the Butyl Homologue of Δ 9-Tetrahydrocannabinol. JOURNAL OF NATURAL PRODUCTS 2020; 83:88-98. [PMID: 31891265 DOI: 10.1021/acs.jnatprod.9b00876] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The butyl homologues of Δ9-tetrahydrocannabinol, Δ9-tetrahydrocannabutol (Δ9-THCB), and cannabidiol, cannabidibutol (CBDB), were isolated from a medicinal Cannabis sativa variety (FM2) inflorescence. Appropriate spectroscopic and spectrometric characterization, including NMR, UV, IR, ECD, and HRMS, was carried out on both cannabinoids. The chemical structures and absolute configurations of the isolated cannabinoids were confirmed by comparison with the spectroscopic data of the respective compounds obtained by stereoselective synthesis. The butyl homologue of Δ9-THC, Δ9-THCB, showed an affinity for the human CB1 (Ki = 15 nM) and CB2 receptors (Ki = 51 nM) comparable to that of (-)-trans-Δ9-THC. Docking studies suggested the key bonds responsible for THC-like binding affinity for the CB1 receptor. The formalin test in vivo was performed on Δ9-THCB in order to reveal possible analgesic and anti-inflammatory properties. The tetrad test in mice showed a partial agonistic activity of Δ9-THCB toward the CB1 receptor.
Collapse
MESH Headings
- Analgesics/pharmacology
- Animals
- Cannabidiol/chemistry
- Cannabinoids/chemistry
- Cannabinoids/isolation & purification
- Cannabis/chemistry
- Dronabinol/chemistry
- Dronabinol/isolation & purification
- Humans
- Medical Marijuana
- Mice
- Molecular Structure
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB1/isolation & purification
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/chemistry
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Cinzia Citti
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
- Mediteknology s.r.l. , Via Arnesano , 73100 Lecce , Italy
- CNR NANOTEC , Campus Ecotekne, Via Monteroni , 73100 Lecce , Italy
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology , Università della Campania "L. Vanvitelli" , Via Santa Maria di Costantinopoli 16 , 80138 Naples , Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Division of Pharmacology , Università della Campania "L. Vanvitelli" , Via Santa Maria di Costantinopoli 16 , 80138 Naples , Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology , Università della Campania "L. Vanvitelli" , Via Santa Maria di Costantinopoli 16 , 80138 Naples , Italy
| | - Maria Angela Vandelli
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Flavio Forni
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Giuseppe Gigli
- CNR NANOTEC , Campus Ecotekne, Via Monteroni , 73100 Lecce , Italy
| | - Aldo Laganà
- CNR NANOTEC , Campus Ecotekne, Via Monteroni , 73100 Lecce , Italy
- Department of Chemistry , Sapienza University of Rome , Piazzale Aldo Moro 5 , 00185 Rome , Italy
| | - Carmela Maria Montone
- Department of Chemistry , Sapienza University of Rome , Piazzale Aldo Moro 5 , 00185 Rome , Italy
| | - Giuseppe Cannazza
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
- CNR NANOTEC , Campus Ecotekne, Via Monteroni , 73100 Lecce , Italy
| |
Collapse
|
15
|
Impact of alloy fluctuations and Coulomb effects on the electronic and optical properties of c-plane GaN/AlGaN quantum wells. Sci Rep 2019; 9:18862. [PMID: 31827118 PMCID: PMC6906529 DOI: 10.1038/s41598-019-53693-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/01/2019] [Indexed: 11/12/2022] Open
Abstract
We report on a combined theoretical and experimental study of the impact of alloy fluctuations and Coulomb effects on the electronic and optical properties of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c$$\end{document}c-plane GaN/AlGaN multi-quantum well systems. The presence of carrier localization effects in this system was demonstrated by experimental observations, such as the “S-shape” temperature dependence of the photoluminescence (PL) peak energy, and non-exponential PL decay curves that varied across the PL spectra at 10 K. A three-dimensional modified continuum model, coupled with a self-consistent Hartree scheme, was employed to gain insight into the electronic and optical properties of the experimentally studied \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c$$\end{document}c-plane GaN/AlGaN quantum wells. This model confirmed the existence of strong hole localization arising from the combined effects of the built-in polarization field along the growth direction and the alloy fluctuations at the quantum well/barrier interface. However, for electrons these localization effects are less pronounced in comparison to the holes. Furthermore, our calculations show that the attractive Coulomb interaction between electron and hole results in exciton localization. This behavior is in contrast to the picture of independently localized electrons and holes, often used to explain the radiative recombination process in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c$$\end{document}c-plane InGaN/GaN quantum well systems.
Collapse
|
16
|
Lelevic A, Souchon V, Moreaud M, Lorentz C, Geantet C. Gas chromatography vacuum ultraviolet spectroscopy: A review. J Sep Sci 2019; 43:150-173. [PMID: 31750981 DOI: 10.1002/jssc.201900770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 11/12/2022]
Abstract
Accelerated technological progress and increased complexity of interrogated matrices imposes a demand for fast, powerful, and resolutive analysis techniques. Gas chromatography has been for a long time a 'go-to' technique for the analysis of mixtures of volatile and semi-volatile compounds. Coupling of the several dimensions of gas chromatography separation has allowed to access a realm of improved separations in the terms of increased separation power and detection sensitivity. Especially comprehensive separations offer an insight into detailed sample composition for complex samples. Combining these advanced separation techniques with an informative detection system such as vacuum ultraviolet spectroscopy is therefore of great interest. Almost all molecules absorb the vacuum ultraviolet radiation and have distinct spectral features with compound classes exhibiting spectral signature similarities. Spectral information can be 'filtered' to extract the response in the most informative spectral ranges. Developed algorithms allow spectral mixture estimation of coeluting species. Vacuum ultraviolet detector follows Beer-Lambert law, with the possibility of calibrationless quantitation. The purpose of this article is to provide an overview of the features and specificities of gas chromatography-vacuum ultraviolet spectroscopy coupling which has gained interest since the recent introduction of a commercial vacuum ultraviolet detector. Potentials and limitations, relevant theoretical considerations, recent advances and applications are explored.
Collapse
Affiliation(s)
- Aleksandra Lelevic
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize BP 3, 69360, Solaize, France.,IRCELYON, UMR5256 CNRS-UCB Lyon 1, Villeurbanne Cedex, France
| | - Vincent Souchon
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize BP 3, 69360, Solaize, France
| | - Maxime Moreaud
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize BP 3, 69360, Solaize, France.,MINESParisTech, PSL-ResearchUniversity, CMM, Fontainebleau, France
| | - Chantal Lorentz
- IRCELYON, UMR5256 CNRS-UCB Lyon 1, Villeurbanne Cedex, France
| | | |
Collapse
|
17
|
Reiss R, Gruber B, Klingbeil S, Gröger T, Ehlert S, Zimmermann R. Evaluation and application of gas chromatography - vacuum ultraviolet spectroscopy for drug- and explosive precursors and examination of non-negative matrix factorization for deconvolution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:129-134. [PMID: 31030040 DOI: 10.1016/j.saa.2019.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Since the introduction of a benchtop vacuum ultraviolet (VUV) absorption spectroscope with an increased wavelength range towards to the high energetic ultraviolet radiation, gas chromatography coupled to VUV has been proven a powerful tool in several fields of application such as petroleomics, permanent gas analytic, pesticide analytic and many more. In this study, the potential of GC-VUV for investigations was examined, focusing on drug- and explosive precursors as well as chemical warfare simulants. The ability of VUV absorption spectra to differentiate isomers is presented, among others for nitroaromatics. In addition, the limit of detection for target compounds was determined to 0.7 ng absolute on column. Furthermore, non-negative matrix factorization (NMF) was successfully implemented as alternative deconvolution approach and evaluated for the deconvolution of unknown substances. In comparison, the spectral library-based deconvolution was applied to a standard mixture and a simulated case study. The results reveal that the NMF is a useful additional tool for deconvolution because, unlike library-based deconvolution, it allows to investigate unknown substances as well.
Collapse
Affiliation(s)
- René Reiss
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Beate Gruber
- Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Sophie Klingbeil
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Sven Ehlert
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany.
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany; Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
18
|
Leghissa A, Hildenbrand ZL, Schug KA. The imperatives and challenges of analyzing Cannabis edibles. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Cruse CA, Goodpaster JV. Generating highly specific spectra and identifying thermal decomposition products via Gas Chromatography / Vacuum Ultraviolet Spectroscopy (GC/VUV): Application to nitrate ester explosives. Talanta 2019; 195:580-586. [DOI: 10.1016/j.talanta.2018.11.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
|
20
|
Ramirez CL, Fanovich MA, Churio MS. Cannabinoids: Extraction Methods, Analysis, and Physicochemical Characterization. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64183-0.00004-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|