Application of UHPLC Fingerprints Combined with Chemical Pattern Recognition Analysis in the Differentiation of Six
Rhodiola Species.
Molecules 2021;
26:molecules26226855. [PMID:
34833946 PMCID:
PMC8618991 DOI:
10.3390/molecules26226855]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Rhodiola, especially Rhodiola crenulate and Rhodiola rosea, is an increasingly widely used traditional medicine or dietary supplement in Asian and western countries. Because of the phytochemical diversity and difference of therapeutic efficacy among Rhodiola species, it is crucial to accurately identify them. In this study, a simple and efficient method of the classification of Rhodiola crenulate, Rhodiola rosea, and their confusable species (Rhodiola serrata, Rhodiola yunnanensis, Rhodiola kirilowii and Rhodiola fastigiate) was established by UHPLC fingerprints combined with chemical pattern recognition analysis. The results showed that similarity analysis and principal component analysis (PCA) could not achieve accurate classification among the six Rhodiola species. Linear discriminant analysis (LDA) combined with stepwise feature selection exhibited effective discrimination. Seven characteristic peaks that are responsible for accurate classification were selected, and their distinguishing ability was successfully verified by partial least-squares discriminant analysis (PLS-DA) and orthogonal partial least-squares discriminant analysis (OPLS-DA), respectively. Finally, the components of these seven characteristic peaks were identified as 1-(2-Hydroxy-2-methylbutanoate) β-D-glucopyranose, 4-O-glucosyl-p-coumaric acid, salidroside, epigallocatechin, 1,2,3,4,6-pentagalloyglucose, epigallocatechin gallate, and (+)-isolarisiresinol-4′-O-β-D-glucopyranoside or (+)-isolarisiresinol-4-O-β-D-glucopyranoside, respectively. The results obtained in our study provided useful information for authenticity identification and classification of Rhodiola species.
Collapse