1
|
A Simple Stability-Indicating UPLC Method for the Concurrent Assessment of Paracetamol and Caffeine in Pharmaceutical Formulations. SEPARATIONS 2023. [DOI: 10.3390/separations10010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A fixed-dose combination of paracetamol (PCM) and caffeine (CAF) tablets/capsules is the most frequently used over-the-counter medicine for fever and headache. In this paper, a simple, reliable, sensitive, rapid, and stability-indicating ultra-performance liquid chromatography (UPLC) analytical method was proposed for simultaneously assessing PCM and CAF in pharmaceutical formulations. The UPLC method was developed on an Acquity UPLC® CSHTM C18 column, and the column oven temperature was maintained at 35 ± 5 °C with isocratic elution by using a solution of methanol and water (30:70, v/v). The maximum absorbance of PCM and CAF was observed at 272.5 nm. The flow rate was 0.2 mL/min, and the injection volume was 1 µL, with the total run time of 2 min for the separation of PCM and CAF. The proposed UPLC method was validated according to the ICH guidelines, and it demonstrated excellent linearity, with correlation coefficients of 0.9995 and 0.9999 over the concentration ranges of 40–400 and 7–70 ng/mL for PCM and CAF, respectively. The mean retention times of 0.82 ± 0.0 and 1.16 ± 0.02 were observed for PCM and CAF, respectively. The limits of detection and quantification were 16.62 and 3.86 for PCM, respectively, and 50.37 and 11.70 for CAF, respectively. PCM and CAF were subjected to acidic, alkali, oxidative, phytochemical, dry-heat, and wet-heat degradation. The method was found to well separate the analytes’ peaks from degradation peaks, with no alterations in retention times. The proposed method is linear, precise, accurate, specific, and robust, and it can indicate stability and be used for the quantitative assessment of pharmaceutical formulations comprising PCM and CAF within a short period of time.
Collapse
|
2
|
Altunay N, Tuzen M, Hazer B, Elik A. Synthesized of a novel xanthate functionalized polypropylene as adsorbent for dispersive solid phase microextraction of caffeine using orbital shaker in mixed beverage matrices. Food Chem 2022; 393:133464. [PMID: 35751221 DOI: 10.1016/j.foodchem.2022.133464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
Abstract
A newly synthesized xanthate functionalized chlorinated polypropylene (PP-Xa) was used as adsorbent for the orbital shaker based on dispersive solid phase microextraction (OS-DSPME) of caffein from several tea, coffee, energy drink, coca-cola and chocolate samples using UV-vis. spectrophotometer. Synthesized PP-Xa was characterized using Fourier Transform Infrared spectroscopy (FTIR-ATR) and nuclear magnetic resonance spectroscopy (1H NMR). Various parameters like pH, PP-Xa amount, extraction time, type of eluent and its volume were optimized. Linear range, detection limit (LOD), limit of quantification (LOQ), relative standard deviation (RSD), recovery values, and enrichment factor (EF) were found 90-1000 μgL-1, 27.3 µg L-1, 90 µg L-1, 1.9-2.6%, 98 ± 2%, and 167, respectively. Adsorption capacity of PP-Xa was found 271.9 mg g-1. Standard addition and reference method were used for confirm the accuracy of present method.
Collapse
Affiliation(s)
- Nail Altunay
- Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Tuzen
- Department of Chemistry, Tokat Gaziosmanpasa University, 60250 Tokat, Turkey; King Fahd University of Petroleum and Minerals, Research Institute, Center for Environment and Marine Studies, Dhahran 31261, Saudi Arabia.
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevşehir, Turkey; Zonguldak Bülent Ecevit University, Department of Chemistry, 67100 Zonguldak, Turkey
| | - Adil Elik
- Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
3
|
Seyedi Z, Esmaeilipour O, Shirani M, Rashidi Nodeh H, Mazhari M. Heterogeneous adsorbent based on CeZrO 2 nanoparticles doped magnetic graphene oxide used for vortex assisted magnetic dispersive solid phase extraction of erythromycin in chicken. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1521-1530. [PMID: 35793387 DOI: 10.1080/19440049.2022.2096929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A simple, fast, and efficient method of vortex assisted magnetic dispersive solid phase extraction for separation and pre-concentration of erythromycin in chicken samples prior to high LC-UV determination has been developed. The novel heterogeneous CeZrO2 nanoparticles doped magnetic graphene oxide, for use as an efficient nanosorbent, was synthetised and applied for the adsorption of erythromycin. The synthetised nanosorbent was characterised using both Fourier-transform infra-red (FT-IR) and energy dispersive X-Ray (EDX) spectroscopy together with field emission scanning electron microscopy-EDX. To obtain the best extraction condition and maximum extraction efficiency of erythromycin, the effect of important parameters including pH, amount of sorbent, vortexing time, ionic strength, sample volume, and desorption conditions were investigated. At optimum conditions, a linear range of 0.25-300 µg kg-1, LOD (S/N = 3) of 0.079 µg kg-1, and LOQ (S/N = 10) of 0.270 µg kg-1 were obtained. The precision of the method was established as having an RSD (%) at 100 µg kg-1 of erythromycin for seven replicates of 2.6% and 3.2% for the intra-day and the inter-day, respectively. Recoveries over 94.0% confirmed a high capability of the proposed method for separation and determination of erythromycin residues in chicken being one of the most important animal products.
Collapse
Affiliation(s)
- Zohreh Seyedi
- Faculty of Agriculture, Department of Animal Science, University of Jiroft, Jiroft, Iran
| | - Omidali Esmaeilipour
- Faculty of Agriculture, Department of Animal Science, University of Jiroft, Jiroft, Iran
| | - Mahboube Shirani
- Faculty of Science, Department of Chemistry, University of Jiroft, Jiroft, Iran
| | - Hamid Rashidi Nodeh
- Faculty of Food Industry and Agriculture, Department of Food Science and Technology, Standard Research Institute, Karaj, Iran
| | - Mozhgan Mazhari
- Faculty of Agriculture, Department of Animal Science, University of Jiroft, Jiroft, Iran
| |
Collapse
|
4
|
Foudah AI, Shakeel F, Salkini MA, Alshehri S, Ghoneim MM, Alam P. A Green High-Performance Thin-Layer Chromatography Method for the Determination of Caffeine in Commercial Energy Drinks and Formulations. MATERIALS 2022; 15:ma15092965. [PMID: 35591300 PMCID: PMC9103461 DOI: 10.3390/ma15092965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023]
Abstract
The literature on green analytical approaches for caffeine estimation is limited. As a consequence, this study aimed to establish a reverse-phase high-performance thin-layer chromatography (HPTLC) technique for caffeine estimation in a variety of commercial energy drinks (ED) and pharmaceutical formulations that is rapid, sensitive, and green. The combination of ethanol-water (55:45 v v−1) was used as a mobile phase. The detection of caffeine was carried out at 275 nm. The green reverse-phase HPTLC method was linear in the concentration range of 50−800 ng band−1. Furthermore, the developed method for caffeine estimation was simple, quick, economical, accurate, precise, robust, sensitive, and green. The amount of caffeine in different marketed ED (ED1−ED10) was recorded in the range of 21.02−37.52 mg 100 mL−1 using the developed HPTLC method. However, the amount of caffeine in different commercial formulations (F1−F3) was estimated as 10.63−20.30 mg 100 mL−1 using the same method. The “analytical GREEnness (AGREE)” scale for the developed analytical method was predicted to be 0.80, utilizing 12 distinct components of green analytical chemistry, indicating the HPTLC approach’s excellent greener profile. Overall, the developed method for estimating caffeine in marketed ED and dosage forms was found to be reliable.
Collapse
Affiliation(s)
- Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.I.F.); (M.A.S.)
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.S.); (S.A.)
| | - Mohammad A. Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.I.F.); (M.A.S.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.S.); (S.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.I.F.); (M.A.S.)
- Correspondence: or
| |
Collapse
|
5
|
Alam P, Shakeel F, Ali A, Alqarni MH, Foudah AI, Aljarba TM, Alkholifi FK, Alshehri S, Ghoneim MM, Ali A. Simultaneous Determination of Caffeine and Paracetamol in Commercial Formulations Using Greener Normal-Phase and Reversed-Phase HPTLC Methods: A Contrast of Validation Parameters. Molecules 2022; 27:405. [PMID: 35056720 PMCID: PMC8778437 DOI: 10.3390/molecules27020405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/27/2022] Open
Abstract
There has been no assessment of the greenness of the described analytical techniques for the simultaneous determination (SMD) of caffeine and paracetamol. As a result, in comparison to the greener normal-phase high-performance thin-layer chromatography (HPTLC) technique, this research was conducted to develop a rapid, sensitive, and greener reversed-phase HPTLC approach for the SMD of caffeine and paracetamol in commercial formulations. The greenness of both techniques was calculated using the AGREE method. For the SMD of caffeine and paracetamol, the greener normal-phase and reversed-phase HPTLC methods were linear in the 50-500 ng/band and 25-800 ng/band ranges, respectively. For the SMD of caffeine and paracetamol, the greener reversed-phase HPTLC approach was more sensitive, accurate, precise, and robust than the greener normal-phase HPTLC technique. For the SMD of caffeine paracetamol in commercial PANEXT and SAFEXT tablets, the greener reversed-phase HPTLC technique was superior to the greener normal-phase HPTLC approach. The AGREE scores for the greener normal-phase and reversed-phase HPTLC approaches were estimated as 0.81 and 0.83, respectively, indicated excellent greenness profiles for both analytical approaches. The greener reversed-phase HPTLC approach is judged superior to the greener normal-phase HPTLC approach based on numerous validation parameters and pharmaceutical assays.
Collapse
Affiliation(s)
- Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.H.A.); (A.I.F.); (T.M.A.)
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (F.S.); (S.A.)
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.H.A.); (A.I.F.); (T.M.A.)
| | - Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.H.A.); (A.I.F.); (T.M.A.)
| | - Tariq M. Aljarba
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (M.H.A.); (A.I.F.); (T.M.A.)
| | - Faisal K. Alkholifi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (F.S.); (S.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Ad Diriyah 13713, Saudi Arabia;
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| |
Collapse
|