Wu L, Zhang X, Chen L, Zhang H, Li C, Lv Y, Xu Y, Jia X, Shi Y, Guo X. Amphoteric starch derivatives as reusable flocculant for heavy-metal removal.
RSC Adv 2018;
8:1274-1280. [PMID:
35540895 PMCID:
PMC9077004 DOI:
10.1039/c7ra12798g]
[Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 12/22/2017] [Indexed: 01/22/2023] Open
Abstract
A pH-responsive amphoteric starch derivative (PRAS) bearing dual functional groups (amino and carboxyl groups) was prepared through etherification of starch with 2-chloro-4,6-diglycino-[1,3,5]-triazine. PRAS exhibits a reversible pH-response property in aqueous solution. The attractive property of PRAS is that it could be used as an effective flocculant for heavy metal-ion (e.g. Cu(ii) and Zn(ii)) removal from wastewater by changing pH. The transition of hydrophobicity–hydrophilicity would produce shrinkage of the polymer matrix, facilitating the release of heavy-metal ions from the saturated flocculant. As an ideal flocculant PRAS displayed outstanding stability and reproducibility, whose remove rate for Cu(ii) and Zn(ii) remained at 93% and 91% after three flocculation/regeneration cycles.
A pH-responsive starch-based flocculants containing both cationic and anionic functional groups has been developed. The saturated flocculant can be facilely regenerated and separated from the solution by applying an external pH stimulus.![]()
Collapse