Boonsuk P, Sukolrat A, Bourkaew S, Kaewtatip K, Chantarak S, Kelarakis A, Chaibundit C. Structure-properties relationships in alkaline treated rice husk reinforced thermoplastic cassava starch biocomposites.
Int J Biol Macromol 2020;
167:130-140. [PMID:
33249147 DOI:
10.1016/j.ijbiomac.2020.11.157]
[Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 11/28/2022]
Abstract
The study focuses on structure-properties relationships in thermoplastic cassava starch (TPS) based biocomposites comprising 5-20 wt% of untreated and treated rice husk (RH). Alkaline treatment with 11% w/v NaOH removed the hemicellulose layer of RH as confirmed by Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), and resulted in a larger population of -OH groups exposing on the fibril surface. Consequently, the filler-matrix interactions between treated RH and TPS were enhanced, although Brunauer-Emmett-Teller (BET) surface area analysis indicated that the surface area of treated RH was not increased. Interestingly, the biocomposites contained 20 wt% treated RH showed substantially improved tensile strength by a factor of 220% compared to the neat TPS. The biocomposite at 15 wt% treated RH showed high water absorption. TPS with all treated RH contents showed high biodegradation rate, while the thermal stability of the TPS/treated RH biocomposites was slightly decreased. These novel composites showed promising properties for applications as absorbents.
Collapse