1
|
Zarski A, Kapusniak K, Ptak S, Rudlicka M, Coseri S, Kapusniak J. Functionalization Methods of Starch and Its Derivatives: From Old Limitations to New Possibilities. Polymers (Basel) 2024; 16:597. [PMID: 38475281 DOI: 10.3390/polym16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
It has long been known that starch as a raw material is of strategic importance for meeting primarily the nutritional needs of people around the world. Year by year, the demand not only for traditional but also for functional food based on starch and its derivatives is growing. Problems with the availability of petrochemical raw materials, as well as environmental problems with the recycling of post-production waste, make non-food industries also increasingly interested in this biopolymer. Its supporters will point out countless advantages such as wide availability, renewability, and biodegradability. Opponents, in turn, will argue that they will not balance the problems with its processing and storage and poor functional properties. Hence, the race to find new methods to improve starch properties towards multifunctionality is still ongoing. For these reasons, in the presented review, referring to the structure and physicochemical properties of starch, attempts were made to highlight not only the current limitations in its processing but also new possibilities. Attention was paid to progress in the non-selective and selective functionalization of starch to obtain materials with the greatest application potential in the food (resistant starch, dextrins, and maltodextrins) and/or in the non-food industries (hydrophobic and oxidized starch).
Collapse
Affiliation(s)
- Arkadiusz Zarski
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Kamila Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sylwia Ptak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Magdalena Rudlicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Janusz Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| |
Collapse
|
2
|
Semwal J, Meera MS. Modification of sorghum starch as a function of pullulanase hydrolysis and infrared treatment. Food Chem 2023; 416:135815. [PMID: 36871507 DOI: 10.1016/j.foodchem.2023.135815] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023]
Abstract
Papain-pretreated sorghum grains were modified by using pullulanase and infrared (IR) irradiation to decrease starch digestibility. An optimum synergistic effect was found under conditions of pullulanase (1 U/ml/5h) and IR (220 oC/3 min) treatment, which produced modified corneous endosperm starch with 0.022 hydrolysis rate, 42.58 hydrolysis index, and 0.468 potential digestibility. The modification increased amylose content and crystallinity up to 31.31 % and 62.66 %, respectively. However, the starch modification decreased its swelling power, solubility index, and pasting properties. FTIR revealed an increase in the ratio of 1047/1022 and a decrease in 1022/995, indicating the formation of a more orderly structure. The debranching effect of pullulanase was stabilized by the IR radiation amplifying its effect on starch digestibility. Therefore, the combination of debranching and infrared treatment could be an efficient method to produce 'tailor-made' starch, that can be further utilized in food industries to manufacture food for target population.
Collapse
Affiliation(s)
- Jyoti Semwal
- Department of Grain Science and Technology, CSIR- Central Food Technological, Research Institute, Mysore 570020, Karnataka, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - M S Meera
- Department of Grain Science and Technology, CSIR- Central Food Technological, Research Institute, Mysore 570020, Karnataka, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
3
|
Deepika S, Sutar PP. Spectral selective infrared heating of food components based on optical characteristics and penetration depth: a critical review. Crit Rev Food Sci Nutr 2023; 64:10749-10771. [PMID: 37395398 DOI: 10.1080/10408398.2023.2227899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Infrared (IR) radiation has been used in food processing applications for its unique high heating efficiency. There is a great need to address the radiation absorption and heating effect during the application of IR in the processing of foods. The radiation wavelength determines the nature of the processing, and it is mainly affected by the type of emitter, operating temperature, and the power supplied. The penetration depth of the IR on food material plays a critical role in the heating level along with the optical characteristics of the IR and food product. The IR radiations cause a significant change in the food components like starch, protein, fats and enzymes. The facility to generate wavelength-specific radiation output can hold the potential of momentously increasing the efficiency of IR heating operations. IR heating is gaining importance in 3D and 4D printing systems, and the application of artificial intelligence in IR processing is being explored. This state-of-art review gives a detailed view of the different emitters of IR and mainly emphasizes the behavior and changes of major food components during IR treatment. The penetration depth of IR, optical characteristics and selective spectral heating based on the target product are discussed.
Collapse
Affiliation(s)
- Sakthivel Deepika
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
4
|
Abhilasha A, Kaur L, Monro J, Hardacre A, Singh J. Effects of hydrothermal treatment and low-temperature storage of whole wheat grains on in vitro starch hydrolysis and flour properties. Food Chem 2022; 395:133516. [DOI: 10.1016/j.foodchem.2022.133516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/10/2022] [Accepted: 06/15/2022] [Indexed: 11/04/2022]
|
5
|
Wang Q, Li L, Liu C, Zheng X. Heat-moisture modified blue wheat starch: Physicochemical properties modulated by its multi-scale structure. Food Chem 2022; 386:132771. [PMID: 35344719 DOI: 10.1016/j.foodchem.2022.132771] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
Blue wheat starch was modified by heat-moisture treatment (HMT) with varying moisture contents (MCs). Changes in physicochemical properties were evaluated on the basis of its multi-scale structure. Following HMTs with MC below 30 %, the starch remained brighter and presented total phenolics content up to 0.20 mg/g. As treating MC increased, structural disruptions became more pronounced, which were characterized by crystallinity loss, lamellae's loosening, hydrogen bonding breakage, and debranching. Furthermore, HMTs decreased the proportion of external A chains of amylopectin. Concomitantly, modified starches showed progressively increased transition temperatures but decreased enthalpy values. Despite the swelling power decrease, HMTs with MC of 15 % showed markedly higher peak viscosity than control, as a result of the more compact semi-crystalline lamellae and homogenous electron distribution. Besides, all HMT-starches showed lowered breakdown and setback. This novel modified starch would be promising ingredients for modulating the viscoelasticity of healthy anti-staling staple foods.
Collapse
Affiliation(s)
- Qingfa Wang
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Limin Li
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Chong Liu
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Xueling Zheng
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China.
| |
Collapse
|
6
|
Oduola AA, Atungulu GG. Impacts of Selected Infrared Wavelength Treatments on the Pasting Properties and Discoloration of Rice. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abass A. Oduola
- Department of Food Science University of Arkansas Division of Agriculture, 2650 N Young Avenue, University of Arkansas, Fayetteville, AR 72704 USA
| | - Griffiths G. Atungulu
- Department of Food Science University of Arkansas Division of Agriculture, 2650 N Young Avenue, University of Arkansas, Fayetteville, AR 72704 USA
| |
Collapse
|
7
|
Fonseca LM, Halal SLME, Dias ARG, Zavareze EDR. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohydr Polym 2021; 274:118665. [PMID: 34702484 DOI: 10.1016/j.carbpol.2021.118665] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Heat-moisture treatment (HMT) and annealing are hydrothermal starch modifications. HMT is performed using high temperature and low moisture content range, whereas annealing uses excess of water, a long period of time, and temperature above the glass transition and below the gelatinization temperature. This review focuses on: research advances; the effect of HMT and annealing on starch structure and most important properties; combined modifications; and HMT-starch and annealed-starch applications. Annealing and HMT can be performed together or combined with other modifications. These combinations contribute to new applications in different areas. The annealed and HMT-starches can be used for pasta, candy, bakery products, films, nanocrystals, and nanoparticles. HMT has been studied on starch digestibility and promising data have been reported, due to increased content of slowly digestible and resistant starches. The starch industry is in constant expansion, and modification processes increase its versatility, adapting it for different purposes in food industries.
Collapse
Affiliation(s)
- Laura Martins Fonseca
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil.
| | - Shanise Lisie Mello El Halal
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS 96010-900, Brazil
| |
Collapse
|
8
|
Infrared modification of sorghum to produce a low digestible grain fraction. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Semwal J, Meera MS. Infrared Radiation: Impact on Physicochemical and Functional Characteristics of Grain Starch. STARCH-STARKE 2020. [DOI: 10.1002/star.202000112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jyoti Semwal
- Department of Grain Science and Technology CSIR‐Central Food Technological Research Institute Mysore Karnataka 570020 India
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh 201002 India
| | - MS Meera
- Department of Grain Science and Technology CSIR‐Central Food Technological Research Institute Mysore Karnataka 570020 India
| |
Collapse
|
10
|
Iuga M, Mironeasa S. A review of the hydrothermal treatments impact on starch based systems properties. Crit Rev Food Sci Nutr 2019; 60:3890-3915. [DOI: 10.1080/10408398.2019.1664978] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mădălina Iuga
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania
| | - Silvia Mironeasa
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania
| |
Collapse
|
11
|
Pongpichaiudom A, Songsermpong S. Characterization of frying, microwave-drying, infrared-drying, and hot-air drying on protein-enriched, instant noodle microstructure, and qualities. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13560] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aujcharaporn Pongpichaiudom
- Department of Food Science and Technology; Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak 10900; Bangkok Thailand
| | - Sirichai Songsermpong
- Department of Food Science and Technology; Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak 10900; Bangkok Thailand
| |
Collapse
|