1
|
Zhao L, Wang J, Xiao S, Du M, Zhao D, Dai X, Zhou Z, Cao Q. A novel isolation technique for sweetpotato starch and its application in thermal property characterization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39360446 DOI: 10.1002/jsfa.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The utilization of sweetpotato starch in the food industry is significantly influenced by the granule size of the starch. To isolate sweetpotato starch fractions with different sizes, an efficient isolation method is in demand. The differences in thermal properties of starch fractions with different sizes from various sweetpotato varieties were revealed insufficiently. RESULTS In this study, we devised a time-saving isolation technique to effectively isolate sweetpotato starch fractions based on granule sizes. The new technique was proved applicable for sweetpotato varieties with different flesh colors. The amylose contents of the isolated starch fractions were in the range 16.49-23.27%. A positive association was observed between amylose content, relative crystallinity of starch fractions and their granule size. Conversely, both the swelling power and water solubility at 95 °C displayed a consistent decline from more than 30 g g-1 to lower than 20 g g-1 as the granule size increased. Tp, To and Tc decreased gradually with an increase of starch granule size, while the medium- or small-sized starch fractions showed higher ΔH. In the first stage of thermogravimetric analysis curves, the weight of the small-sized starch fractions decreased the slowest, but no definite pattern was detected in the second or third stage. CONCLUSION Therefore, the newly established technique and the results of this study will help better understand the properties of sweetpotato starch fractions with different sizes and certainly provide guidelines for the utilization of sweetpotato starch in food processing and product development. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingxiao Zhao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Jie Wang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Shizuo Xiao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Mingjuan Du
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Donglan Zhao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Xibin Dai
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Zhilin Zhou
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Qinghe Cao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| |
Collapse
|
2
|
Yan X, McClements DJ, Luo S, Ye J, Liu C. A review of the effects of fermentation on the structure, properties, and application of cereal starch in foods. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38532611 DOI: 10.1080/10408398.2024.2334269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Fermentation is one of the oldest food processing techniques known to humans and cereal fermentation is still widely used to create many types of foods and beverages. Starch is a major component of cereals and the changes in its structure and function during fermentation are of great importance for scientific research and industrial applications. This review summarizes the preparation of fermented cereals and the effects of fermentation on the structure, properties, and application of cereal starch in foods. The most important factors influencing cereal fermentation are pretreatment, starter culture, and fermentation conditions. Fermentation preferentially hydrolyzes the amorphous regions of starch and fermented starches have a coarser appearance and a smaller molecular weight. In addition, fermentation increases the starch gelatinization temperature and enthalpy and reduces the setback viscosity. This means that fermentation leads to a more stable and retrogradation-resistant structure, which could expand its application in products prone to staling during storage. Furthermore, fermented cereals have potential health benefits. This review may have important implications for the modulation of the quality and nutritional value of starch-based foods through fermentation.
Collapse
Affiliation(s)
- Xudong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Tran PL, Park EJ, Hong JS, Lee CK, Kang T, Park JT. Mechanism of action of three different glycogen branching enzymes and their effect on bread quality. Int J Biol Macromol 2024; 256:128471. [PMID: 38040154 DOI: 10.1016/j.ijbiomac.2023.128471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/04/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Bread staling adversely affects the quality of bread, but starch modification by enzymes can counteract this phenomenon. Glycogen branching enzymes (GBEs) used in this study were isolated from Deinococcus geothermalis (DgGBE), Escherichia coli (EcGBE), and Vibrio vulnificus (VvGBE). These enzymes were characterized and applied for starch dough modification to determine their role in improving bread quality. First, the branching patterns, activity on amylose and amylopectin, and thermostability of the GBEs were determined and compared. EcGBE and DgGBE exhibited better thermostable characteristics than VvGBE, and all GBEs exhibited preferential catalysis of amylopectin over amylose but different degrees. VvGBE and DgGBE produced a large number of short branches. Three GBEs degraded the starch granules and generated soluble polysaccharides. Moreover, the maltose was increased in the starch slurry but most significantly in the DgGBE treatment. Degradation of the starch granules by GBEs enhanced the maltose generation of internal amylases. When used in the bread-making process, DgGBE and VvGBE increased the dough and bread volume by 9 % and 17 %, respectively. The crumb firmness and retrogradation of the bread were decreased and delayed significantly more in the DgGBE bread. Consequently, this study can contribute to understanding the detailed roles of GBEs in the baking process.
Collapse
Affiliation(s)
- Phuong Lan Tran
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Food Technology, An Giang University, Long Xuyen 880000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Eun-Ji Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jung-Sun Hong
- Korea Food Research Institute, Gyeonggi 13539, Republic of Korea
| | | | - Taiyoung Kang
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
4
|
Qi X, Ta MN, Tester RF. Savory Cracker Development for Blood Glucose Control and Management: Glycogen Storage Diseases. J Med Food 2024; 27:79-87. [PMID: 37967450 DOI: 10.1089/jmf.2023.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
The blood glucose response of savory slow energy-release crackers (GLY-HYP) were evaluated in volunteers carrying glycogen storage diseases (GSDs), Types I (Ia) and IV. The crackers have been shown previously to provide a "flat" slow glucose response in healthy volunteers, for up to 4 h. On average for the mixed-sex volunteer group aged 53 to 70 for Type I, the blood glucose concentration increased from baseline to a maximum of 9.5 mmol/L at 60 min and remained above baseline for up to 210 min; overall, above 5 mmol/L for 4 h. In common with healthy individuals, a relatively flat blood glucose response was recorded. For Type IV, mixed-sex patients aged between 55 and 72, the blood glucose concentration reached maximum of 10.2 mmol/L at 45 min and then stayed above baseline for 150 min. Again, overall, above 5 mmol/L for 4 h. Altogether, these data indicate that these crackers would provide a valuable contribution to the nutritional needs of people of different age groups with GSDs (Clinical Registration Number: HRC10032021).
Collapse
Affiliation(s)
- Xin Qi
- Glycologic Limited, Reading, United Kingdom
| | - Minh N Ta
- Glycologic Limited, Reading, United Kingdom
| | | |
Collapse
|
5
|
Flores-Silva PC, Ramírez-Vargas E, Palma-Rodriguez H, Neira-Velazquez G, Hernandez-Hernandez E, Mendez-Montealvo G, Sifuentes-Nieves I. Impact of plasma-activated water on the supramolecular structure and functionality of small and large starch granules. Int J Biol Macromol 2023; 253:127083. [PMID: 37769757 DOI: 10.1016/j.ijbiomac.2023.127083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
Hydrothermal (HMT) and water agitation (WA) treatments using plasma-activated water (PAW) were employed as sustainable methods to modify the molecular and functional performance of small (rice) and large (potato) starch granules. HMT-PAW and WA-PAW treatments resulted in etched and damaged granular surfaces that rearranged the long and short-range crystallinity of the modified starches. Both treatments seemed to predominantly occur in the amorphous region of the rice starch and the crystalline regions of the potato starch, changing the crystallinity values from 22.9 and 14.8 % to 31.8 and 10.4 %, respectively. Thus, the level of the arrangement of chains reached after PAW treatment decreased the ability of rice starch granules to swell (16 to 9 %) and leach out starch molecules from the granules (4.5 to 1.3 %), decreasing the viscosity and pasting profiles as indicated by n and k values. Opposite behavior was observed in the modified potato starches since starch components leached out to a higher extent (1.7 to 5.4 %). The results showed that HMT and WA treatments using PAW are feasible eco-friendly methods for modifying starch granules without chemical reagents. These modified starches could be suitable as functional ingredients or biopolymeric matrices for the food and packaging industry.
Collapse
Affiliation(s)
- Pamela C Flores-Silva
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila, Mexico.
| | - Eduardo Ramírez-Vargas
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila, Mexico
| | - Heidi Palma-Rodriguez
- Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Av. Universidad km 1, Rancho Universitario, C.P. 43600 Tulancingo de Bravo, Hidalgo, Mexico
| | - Guadalupe Neira-Velazquez
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila, Mexico
| | - Ernesto Hernandez-Hernandez
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila, Mexico
| | - Guadalupe Mendez-Montealvo
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco No. 141, Col. Colinas del Cimatario, C.P. 76090 Santiago de Querétaro, Querétaro, Mexico
| | - Israel Sifuentes-Nieves
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila, Mexico.
| |
Collapse
|
6
|
Zhang L, Apea-Bah FB, Chen X, Hornung PS, Malunga LN, Beta T. The physicochemical and structural properties and in vitro digestibility of pea starch isolated from flour ground by milling and air classification. Food Chem 2023; 419:136086. [PMID: 37030213 DOI: 10.1016/j.foodchem.2023.136086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
The fine, coarse and parent starches were isolated from pea flour by milling and air-classification. Their structural, thermal, physicochemical properties and in vitro digestibility were investigated. Particle Size Distribution showed the fine starch with the smallest unimodal distribution (18.33 and 19.02 μm) displayed higher degree of short-range molecular order and lower number of double helix structure. Scanning Electron Microscopy showed the morphology of the coarse starch granules as uniform in size and lacking protein particles on its smooth surface. Differential Scanning Calorimetry revealed the coarse starch had higher enthalpy changes while Rapid Visco Analysis showed higher peak, trough, and breakdown viscosities for the fine starch. In vitro digestibility featured the fine starch containing lower fast digesting starch contents, but with higher resistant starch content, indicating its resistance to enzymatic hydrolysis. The results could provide theoretical support for application of pea starch in functional foods and the manufacture of emerging starch products.
Collapse
Affiliation(s)
- Lixia Zhang
- Research Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| | - Franklin B Apea-Bah
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Xin Chen
- Economic Crops Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Polyanna Silveira Hornung
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Lovemore Nkhata Malunga
- Agriculture and Agri-Food Canada / Government of Canada, 196 Innovation Drive, Winnipeg, Manitoba R3T 6C5, Canada
| | - Trust Beta
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
7
|
Park J, Oh SK, Doo M, Chung HJ, Park HJ, Chun H. Effects of Consuming Heat-Treated Dodamssal Brown Rice Containing Resistant Starch on Glucose Metabolism in Humans. Nutrients 2023; 15:nu15102248. [PMID: 37242130 DOI: 10.3390/nu15102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Rice is a major source of carbohydrates. Resistant starch (RS) is digested in the human small intestine but fermented in the large intestine. This study investigated the effect of consuming heat-treated and powdered brown rice cultivars 'Dodamssal' (HBD) and 'Ilmi' (HBI), with relatively high and less than 1% RS content, respectively, on the regulation of glucose metabolism in humans. Clinical trial meals were prepared by adding ~80% HBI or HBD powder to HBI and HBD meals, respectively. There was no statistical difference for protein, dietary fiber, and carbohydrate content, but the median particle diameter was significantly lower in HBI meals than in HBD meals. The RS content of HBD meals was 11.4 ± 0.1%, and the HBD meals also exhibited a low expected glycemic index. In a human clinical trial enrolling 36 obese participants, the homeostasis model assessment for insulin resistance decreased by 0.05 ± 0.14% and 1.5 ± 1.40% after 2 weeks (p = 0.021) in participants in the HBI and HBD groups, respectively. The advanced glycation end-product increased by 0.14 ± 0.18% in the HBI group and decreased by 0.06 ± 0.14% in the HBD group (p = 0.003). In conclusion, RS supplementation for 2 weeks appears to have a beneficial effect on glycemic control in obese participants.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), 126 Suin-ro, Kwonseon-gu, Suwon 16429, Republic of Korea
| | - Sea-Kwan Oh
- National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, Republic of Korea
| | - Miae Doo
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Hyun-Jung Chung
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyun-Jin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyejin Chun
- Department of Family Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| |
Collapse
|
8
|
Utilization of Indonesian root and tuber starches for glucose production by cold enzymatic hydrolysis. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
9
|
Jiang S, Cen J, Zhou Y, Wang Y, Wu D, Wang Z, Sun J, Shu X. Physicochemical characterizations of five Dioscorea alata L. starches from China. Int J Biol Macromol 2023; 237:124225. [PMID: 36990403 DOI: 10.1016/j.ijbiomac.2023.124225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
D. alata is an important edible and medicinal plant in China. Its tuber is rich in starch but the understanding of the physiochemical properties of D. alata starch is limited. In order to explore the processing and application potential of different D. alata accessions in China, five kinds of D. alata starch (LY, WC, XT, GZ, SM) were isolated and characterized. The study showed that D. alata tubers contained abundant starch, enriched in amylose and resistant starch (RS). D. alata starches showed B-type or C-type diffraction pattern, had higher RS content and gelatinization temperature (GT), lower fa and viscosity when compared to D. opposita, D. esculenta, and D. nipponica. Among D. alata starches, D. alata (SM) showing the C-type diffraction pattern, had the lowest proportion of fa with 10.48 %, the highest amylose, RS2 and RS3 content of 40.24 %, 84.17 % and 10.48 % respectively, and the highest GT and viscosity. The results indicated that D. alata tubers are potential sources for novel starch with high amylose and RS content, and provided a theoretical basis for further utilizations of D. alata starch in food processing and industry application.
Collapse
Affiliation(s)
- Shuo Jiang
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Jinxi Cen
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Yufeng Zhou
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Yin Wang
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Zhi'an Wang
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou 310023, China
| | - Jian Sun
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou 310023, China.
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
10
|
Dual modification of normal corn starch by cross-linking and annealing: investigation of physicochemical, thermal, pasting, and morphological properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Cui C, Jia Y, Sun Q, Yu M, Ji N, Dai L, Wang Y, Qin Y, Xiong L, Sun Q. Recent advances in the preparation, characterization, and food application of starch-based hydrogels. Carbohydr Polym 2022; 291:119624. [DOI: 10.1016/j.carbpol.2022.119624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
|
12
|
Utilisation of Amaranth and Finger Millet as Ingredients in Wheat Dough and Bread for Increased Agro-Food Biodiversity. Foods 2022; 11:foods11070911. [PMID: 35406998 PMCID: PMC8997418 DOI: 10.3390/foods11070911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
Amaranth and finger millet are important food security crops in Africa but show poor bread making ability, even in composite wheat breads. Malting and steaming are promising approaches to improve composite bread quality, which have not been fully explored yet. Therefore, in this study, wheat was blended with native, steamed or malted finger millet or amaranth in the ratio of 70:30. Wheat/native amaranth (WHE-NAM) and wheat/malted amaranth (WHE-MAM) had longer dough development times and higher dough stabilities, water absorption capacities and farinograph quality numbers than wheat/steamed amaranth (WHE-SAM), wheat/native finger millet (WHE-NFM), wheat/steamed finger millet (WHE-SFM) or wheat/malted finger millet (WHE-MFM). The WHE-NAM and WHE-MAM breads had lower crumb firmness and chewiness, higher resilience and cohesiveness and lighter colours than WHE-NFM, WHE-SFM and WHE-MFM. Starch and protein digestibility of composite breads were not different (p > 0.05) from each other and ranged between 95−98% and 83−91%, respectively. Composite breads had higher ash (1.9−2.5 g/100 g), dietary fibre (5.7−7.1 g/100 g), phenolic acid (60−122 mg/100 g) and phytate contents (551−669 mg/100 g) than wheat bread (ash 1.6 g/100 g; dietary fibre 4.5 g/100 g; phenolic acids 59 mg/100 g; phytate 170 mg/100 g). The WHE-NAM and WHE-MAM breads possessed the best crumb texture and nutritional profile among the composite breads.
Collapse
|
13
|
Dukare AS, Arputharaj A, Bharimalla A, Saxena S, Vigneshwaran N. Nanostarch production by enzymatic hydrolysis of cereal and tuber starches. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
14
|
Abstract
Nature has developed starch granules varying in size from less than 1 μm to more than 100 μm. The granule size is an important factor affecting the functional properties and the applicability of starch for food and non-food applications. Within the same botanical species, the range of starch granule size can be up to sevenfold. This review critically evaluated the biological and environmental factors affecting the size of starch granules, the methods for the separation of starch granules and the measurement of size distribution. Further, the structure at different length scales and properties of starch-based on the granule size is elucidated by specifying the typical applications of granules with varying sizes. An amylopectin cluster model showing the arrangement of amylopectin from inside toward the granule surface is proposed with the hypothesis that the steric hindrance for the growth of lamellar structure may limit the size of starch granules.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Cereal Processing and Quality Control, Institute of Food Science and Technology, CAAS/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Venea Dara Daygon
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Vicky Solah
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Qi X, Tester R. Is sugar extracted from plants less healthy than sugar consumed within plant tissues? The sugar anomaly. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2194-2200. [PMID: 33140445 DOI: 10.1002/jsfa.10905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
There are dilemmas in the minds of consumers with respect to sugar consumption - they would like to consume sugars for sweetness, but in a healthy (and perhaps guilt free!) way. In a sense, consumers believe that if sugar does not appear as an ingredient on the product label, but is intrinsic in the food (and will appear as a nutrient), it is 'good'. As an ingredient, however, it is viewed as a 'bad chemical' associated with tooth decay and obesity. The reality is that unless processing induced modifications have occurred, the sugar molecule within a plant tissue is the same molecule structure as present in purified sugar. The same calorific value. However, there is an argument that humans eat too refined food and that if sugars were eaten in their natural context (e.g. within a fruit), their presence and concentration would be in harmony (where different nutrients complement and balance the sugar concentration) with the human body. This reflects the process of eating, satiety, presence of other nutrients (including water) and the associated impact of the indigestible components of plant foods on the transit/nutrient bioavailability control and thus benefits through the gut. The authors explore these issues in this article and seek to provide a scientific basis to different sides of the argument - sugar is good or bad depending on how (in which format and how much/how concentrated) it is consumed. More importantly perhaps, how should sugar consumption - an important nutrient - be managed to optimize the benefits but reduce the disadvantages? © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Qi
- Glycologic Limited, Glasgow, UK
| | | |
Collapse
|
16
|
Nowak E, Khachatryan G, Wisła-Świder A. Structural changes of different starches illuminated with linearly polarised visible light. Food Chem 2020; 344:128693. [PMID: 33248842 DOI: 10.1016/j.foodchem.2020.128693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/27/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Aqueous suspensions (30% w/w) of spelt, amaranth and wheat starches were illuminated with linearly polarised visible light for 5, 15, 25 and 50 h. For native and illuminated samples, the weight-average molecular weight, the radii of gyration of the starch polysaccharide chains, and the distribution of the amylopectin structural units of the illuminated starches were determined. The susceptibility to α-amylolysis together with the iodine-binding properties and crystalline structure were studied for each of the starch samples. Illumination with linearly polarised visible light indicated changes in the crystalline structure of the polysaccharide chains and led to an increased enzymatic hydrolysis rate constant for the first stage of hydrolysis and final hydrolysis extent. Changes in the molecular structure of the starch indicate that illumination of the starches induced depolymerisation-repolymerisation reactions of starch polysaccharide chains. That rearrangements of the molecular starch structure depend on the illumination time and the botanical source of the starch.
Collapse
Affiliation(s)
- Ewelina Nowak
- Faculty of Food Technology, University of Agriculture, 122 Balicka Str., 30-149 Cracow, Poland.
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture, 122 Balicka Str., 30-149 Cracow, Poland
| | - Anna Wisła-Świder
- Faculty of Food Technology, University of Agriculture, 122 Balicka Str., 30-149 Cracow, Poland
| |
Collapse
|
17
|
Almeida RLJ, dos Santos Pereira T, de Andrade Freire V, Santiago ÂM, Oliveira HML, de Sousa Conrado L, de Gusmão RP. Influence of enzymatic hydrolysis on the properties of red rice starch. Int J Biol Macromol 2019; 141:1210-1219. [DOI: 10.1016/j.ijbiomac.2019.09.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
|
18
|
Ding Y, Huang J, Zhang N, Rasmussen SK, Wu D, Shu X. Physiochemical properties of rice with contrasting resistant starch content. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Sun J, He R, Gao F, Kou Z, Lan L, Lan P, Liao A. High‐Efficient Preparation of Cross‐Linked Cassava Starch by Microwave‐Ultrasound‐Assisted and its Physicochemical Properties. STARCH-STARKE 2019. [DOI: 10.1002/star.201800273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Sun
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering of Guangxi University for NationalitiesNanning 530006China
| | - Ri‐Mei He
- Guangxi Zhuang Autonomous Institute of Metrology and TestNanningChina
| | - Feng‐Yuan Gao
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering of Guangxi University for NationalitiesNanning 530006China
| | - Zong‐Liang Kou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering of Guangxi University for NationalitiesNanning 530006China
| | - Li‐Hong Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering of Guangxi University for NationalitiesNanning 530006China
| | - Ping Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering of Guangxi University for NationalitiesNanning 530006China
| | - An‐Ping Liao
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering of Guangxi University for NationalitiesNanning 530006China
| |
Collapse
|
20
|
Utilisation of dietary fibre (non-starch polysaccharide and resistant starch) molecules for diarrhoea therapy: A mini-review. Int J Biol Macromol 2019; 122:572-577. [DOI: 10.1016/j.ijbiomac.2018.10.195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/26/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023]
|
21
|
Qi X, Tester RF. Starch granules as active guest molecules or microorganism delivery systems. Food Chem 2019; 271:182-186. [DOI: 10.1016/j.foodchem.2018.07.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/18/2018] [Accepted: 07/25/2018] [Indexed: 11/26/2022]
|
22
|
Torres FG, Arroyo J, Tineo C, Troncoso O. Tailoring the Properties of Native Andean Potato Starch Nanoparticles Using Acid and Alkaline Treatments. STARCH-STARKE 2018. [DOI: 10.1002/star.201800234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fernando G. Torres
- Department of Mechanical Engineering; Pontificia Universidad Católica del Perú (Lima 32 Perú); Av. Universitaria 1801 Lima 32 Lima Perú
| | - Junior Arroyo
- Department of Mechanical Engineering; Pontificia Universidad Católica del Perú (Lima 32 Perú); Av. Universitaria 1801 Lima 32 Lima Perú
| | - Carlos Tineo
- Department of Mechanical Engineering; Pontificia Universidad Católica del Perú (Lima 32 Perú); Av. Universitaria 1801 Lima 32 Lima Perú
| | - Omar Troncoso
- Department of Mechanical Engineering; Pontificia Universidad Católica del Perú (Lima 32 Perú); Av. Universitaria 1801 Lima 32 Lima Perú
| |
Collapse
|
23
|
Qi X, Tester RF. Starch containing formulations for diarrhoea therapy. Clin Nutr ESPEN 2018; 28:36-40. [PMID: 30390891 DOI: 10.1016/j.clnesp.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022]
Abstract
Diarrhoea therapies in general include a number of approaches (depending on local practise and the cause of the diarrhoea) aimed at: (i) removing the cause (e.g. lactose in the diet); (ii) treating the cause of infection if present (e.g. antibiotics); (iii) reducing the effect of the cause (e.g. adsorbent); (iv) depressing gastric motility and secretions (e.g. various drugs); (v) probiotic bacteria with perhaps prebiotic energy sources and most importantly of all (vi) rehydration using rehydration salt solutions (oral rehydration therapy, ORT, using oral rehydration solutions, ORS). Glucose has been included in ORS formats for rapidly available energy since ORS formats were developed initially- but has the disadvantage of a high osmotic pressure. It is used in modern ORS formats to promote sodium absorption, however. The use of α-glucans (glucose containing oligo- or polysaccharides) in ORS formats is gaining ground in terms of utilisation for diarrhoea - a fairly recent approach to therapy in the western world. The use of different α-glucans in ORS formulations is discussed and strategies for the development further of therapies is investigated. This review is aimed at the scientific and medical communities.
Collapse
Affiliation(s)
- Xin Qi
- Glycologic Limited, 70 Cowcaddens Road, Glasgow, G4 0BA, UK.
| | | |
Collapse
|
24
|
Langó B, Jaiswal S, Bóna L, Tömösközi S, Ács E, Chibbar RN. Grain constituents and starch characteristics influencing in vitro enzymatic starch hydrolysis in Hungarian triticale genotypes developed for food consumption. Cereal Chem 2018. [DOI: 10.1002/cche.10104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bernadett Langó
- Cereal Research Non-profit Ltd.; Szeged Hungary
- Department of Applied Biotechnology and Food Science; Budapest University of Technology and Economics; Budapest Hungary
- Department of Plant Sciences; University of Saskatchewan; Saskatoon Saskatchewan Canada
| | - Sarita Jaiswal
- Department of Plant Sciences; University of Saskatchewan; Saskatoon Saskatchewan Canada
| | - Lajos Bóna
- Cereal Research Non-profit Ltd.; Szeged Hungary
| | - Sándor Tömösközi
- Department of Applied Biotechnology and Food Science; Budapest University of Technology and Economics; Budapest Hungary
| | - Erika Ács
- Cereal Research Non-profit Ltd.; Szeged Hungary
| | - Ravindra N. Chibbar
- Department of Plant Sciences; University of Saskatchewan; Saskatoon Saskatchewan Canada
| |
Collapse
|
25
|
Effect of Tea/Tea Extracts on α‐Glucan Hydrolysis by Enzymes In Vitro and In Vivo − With Parallel Impacts on Health. STARCH-STARKE 2018. [DOI: 10.1002/star.201700339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Affiliation(s)
- Xin Qi
- Glycologic Limited70 Cowcaddens RoadGlasgow G4 0BAUK
| | | |
Collapse
|
27
|
Affiliation(s)
- Xin Qi
- Glycologic LimitedGlasgow G4 0BAUK
| | | | | |
Collapse
|
28
|
Khlestkin VK, Peltek SE, Kolchanov NA. Review of direct chemical and biochemical transformations of starch. Carbohydr Polym 2018; 181:460-476. [DOI: 10.1016/j.carbpol.2017.10.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/04/2017] [Accepted: 10/07/2017] [Indexed: 01/19/2023]
|
29
|
Takagi H, Kubo A, Inoue M, Nakaya M, Suzuki S, Kitamura S. Binding Interaction of Porcine Pancreatic α-Amylase with waxy/amylose extender Double-mutant Rice Starch Granules Does Not Determine Their Susceptibility to Hydrolysis. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hiroki Takagi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
- Nihon Shokuhin Kako Co., Ltd
| | - Akiko Kubo
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Mei Inoue
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Makoto Nakaya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Shiho Suzuki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Shinichi Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
30
|
Kahar UM, Sani MH, Chan KG, Goh KM. Immobilization of α-Amylase from Anoxybacillus sp. SK3-4 on ReliZyme and Immobead Supports. Molecules 2016; 21:E1196. [PMID: 27618002 PMCID: PMC6273902 DOI: 10.3390/molecules21091196] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/04/2016] [Accepted: 09/05/2016] [Indexed: 01/13/2023] Open
Abstract
α-Amylase from Anoxybacillus sp. SK3-4 (ASKA) is a thermostable enzyme that produces a high level of maltose from starches. A truncated ASKA (TASKA) variant with improved expression and purification efficiency was characterized in an earlier study. In this work, TASKA was purified and immobilized through covalent attachment on three epoxide (ReliZyme EP403/M, Immobead IB-150P, and Immobead IB-150A) and an amino-epoxide (ReliZyme HFA403/M) activated supports. Several parameters affecting immobilization were analyzed, including the pH, temperature, and quantity (mg) of enzyme added per gram of support. The influence of the carrier surface properties, pore sizes, and lengths of spacer arms (functional groups) on biocatalyst performances were studied. Free and immobilized TASKAs were stable at pH 6.0-9.0 and active at pH 8.0. The enzyme showed optimal activity and considerable stability at 60 °C. Immobilized TASKA retained 50% of its initial activity after 5-12 cycles of reuse. Upon degradation of starches and amylose, only immobilized TASKA on ReliZyme HFA403/M has comparable hydrolytic ability with the free enzyme. To the best of our knowledge, this is the first report of an immobilization study of an α-amylase from Anoxybacillus spp. and the first report of α-amylase immobilization using ReliZyme and Immobeads as supports.
Collapse
Affiliation(s)
- Ummirul Mukminin Kahar
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Mohd Helmi Sani
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| |
Collapse
|