1
|
Zhang Y, Huang Y, Li Z, Wu H, Zou B, Xu Y. Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities. Cancers (Basel) 2023; 15:3585. [PMID: 37509245 PMCID: PMC10377328 DOI: 10.3390/cancers15143585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy is an important cancer treatment. However, in addition to killing tumor cells, radiotherapy causes damage to the surrounding cells and is toxic to normal tissues. Therefore, an effective radioprotective agent that prevents the deleterious effects of ionizing radiation is required. Numerous synthetic substances have been shown to have clear radioprotective effects. However, most of these have not been translated for use in clinical applications due to their high toxicity and side effects. Many medicinal plants have been shown to exhibit various biological activities, including antioxidant, anti-inflammatory, and anticancer activities. In recent years, new agents obtained from natural products have been investigated by radioprotection researchers, due to their abundance of sources, high efficiency, and low toxicity. In this review, we summarize the mechanisms underlying the radioprotective effects of natural products, including ROS scavenging, promotion of DNA damage repair, anti-inflammatory effects, and the inhibition of cell death signaling pathways. In addition, we systematically review natural products with radioprotective properties, including polyphenols, polysaccharides, alkaloids, and saponins. Specifically, we discuss the polyphenols apigenin, genistein, epigallocatechin gallate, quercetin, resveratrol, and curcumin; the polysaccharides astragalus, schisandra, and Hohenbuehelia serotina; the saponins ginsenosides and acanthopanax senticosus; and the alkaloids matrine, ligustrazine, and β-carboline. However, further optimization through structural modification, improved extraction and purification methods, and clinical trials are needed before clinical translation. With a deeper understanding of the radioprotective mechanisms involved and the development of high-throughput screening methods, natural products could become promising novel radioprotective agents.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheng Li
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanyou Wu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Bingwen Zou
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Xu
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Wang B, Ye T, Li C, Li X, Chen L, Wang G. Cell damage repair mechanism in a desert green algae Chlorella sp. against UV-B radiation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113916. [PMID: 35878498 DOI: 10.1016/j.ecoenv.2022.113916] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The protective ozone layer is continually depleting owing to an increase in the levels of solar UV-B radiation, which has harmful effects on organisms. Algae in desert soil can resist UV-B radiation, but most research on the radiation resistance of desert algae has focused on cyanobacteria. In this study, we found that desert green algae, Chlorella sp., could maintain high photosynthetic activity under UV-B stress. To examine the tolerance mechanism of the desert green algae photosystem, we observed the physiological and transcriptome-level responses of Chlorella sp. to high doses of UV-B radiation. The results showed that the reactive oxygen species (ROS) content first increased and then decreased, while the malondialdehyde (MDA) content revealed no notable lipid peroxidation during the UV-B exposure period. These results suggested that Chlorella sp. may have strong system characteristics for scavenging ROS. The antioxidant enzyme system showed efficient alternate coordination, which exhibited a protective effect against enhanced UV-B radiation. DNA damage and the chlorophyll and soluble protein contents had no significant changes in the early irradiation stage; UV-B radiation did not induce extracellular polysaccharides (EPS) synthesis. Transcriptomic data revealed that a strong photosynthetic system, efficient DNA repair, and changes in the expression of genes encoding ribosomal protein (which aid in protein synthesis and improve resistance) are responsible for the high UV-B tolerance characteristics of Chlorella sp. In contrast, EPS synthesis was not the main pathway for UV-B resistance. Our results revealed the potential cell damage repair mechanisms within Chlorella sp. that were associated with high intensity UV-B stress, thereby providing insights into the underlying regulatory adaptations of desert green algae.
Collapse
Affiliation(s)
- Bo Wang
- Jiangxi Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang 332005, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Resource & Environment, Jiujiang University, Jiujiang 332005, China
| | - Tong Ye
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanzhou Chen
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, China
| | - Gaohong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Tang W, Chen X, Liu D, Xie J. Bioactive Components of Mesona Blume and Their Potential Health Benefits. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1849271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wei Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Dan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Wang ZQ, Song QY, Su JC, Tang W, Song JG, Huang XJ, An J, Li YL, Ye WC, Wang Y. Caffeic acid oligomers from Mesona chinensis and their In Vitro antiviral activities. Fitoterapia 2020; 144:104603. [DOI: 10.1016/j.fitote.2020.104603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022]
|
5
|
Liu S, Tan Y, Ma F, Fu H, Zhang Y. Effects of electron beam irradiation on proteins and exopolysaccharide production and changes in Microcystis aeruginosa. Int J Radiat Biol 2020; 96:689-696. [PMID: 31906777 DOI: 10.1080/09553002.2020.1708992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Microcystis aeruginosa often threaten human health and safety for the toxin and unpleasant odor and removal difficulties during water treatment process. In order to remove it, a novel method high energy was studied in this research.Materials and methods: The electron beam generated by an accelerator was applied to irradiate M. aeruginosa at various doses of 1, 2, 3, 4 and 5 kGy. The effects of irradiation on M. aeruginosa characteristics and mechanism have been researched through surveying the changes in pH and conductivity, changes of algae cell community structure and respiration rate, and changes of protein and exopolysaccharides production were also detected.Result: The data showed that exposure to 2-5 kGy radiation could make pH decrease. Microcystis aeruginosa increased through its own photosynthesis and physiological regulation. The increasing damage to algal cells led to the exosmosis of the contents, which increased the electrical conductivity of algae liquid and decreased the area of algae cells colony. 2-5 kGy irradiation decreased protein content and destroy the antioxidant system and thus reduced the secretion of extracellular polysaccharidesConclusions: 2-5 kGy radiation could control the algae growth and produced obvious effect. The respiration rate decreased obviously that made M. aeruginosa lose activity in a short time. The results proved that irradiation could change the algae growth and affect its life characteristic efficiently in a short time.
Collapse
Affiliation(s)
- Shuyu Liu
- School of Environment and Chemical Engineering, Shanghai University, Shanghai, China.,State Key Laboratory of Urban Water Resource and Environment, Harbin, China
| | - Yan Tan
- School of Environment and Chemical Engineering, Shanghai University, Shanghai, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin, China
| | - Hanzhuo Fu
- Fort Lauderdale Research and Education Center, University of Florida, Davie, FL, USA
| | - Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Tian H, Liu H, Song W, Zhu L, Yin X. Polysaccharide from Caulerpa lentillifera: extraction optimization with response surface methodology, structure and antioxidant activities. Nat Prod Res 2019; 35:3417-3425. [PMID: 31829039 DOI: 10.1080/14786419.2019.1700507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hua Tian
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, P.R. China
| | - Haifang Liu
- Central Laboratory, Affiliated Haikou Hospital Xiangya School of Medicine, Central South University (Haikou Municipal People Hospital), Haikou, P.R. China
| | - Weikang Song
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, P.R. China
| | - Li Zhu
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, P.R. China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, P.R. China
| |
Collapse
|
7
|
Ding F, Zhang N, Wang Z, Qiu J. The Radioprotective Effect of Polyphenols From Pinecones of Pinus koraiensis
and Their Synergistic Effect With Auricularia auricula-judae
(Bull.) J. Schröt Polysaccharides. STARCH-STARKE 2018. [DOI: 10.1002/star.201800009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fangli Ding
- Department of Food Science; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Naixun Zhang
- Department of Food Science and Engineering; School of Forestry; Northeast Forestry University; Harbin 150040 China
| | - Zhenyu Wang
- Department of Food Science; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Junqiang Qiu
- Department of Food Science; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|