1
|
Dehghan-Baniani D, Mehrjou B, Wang D, Bagheri R, Solouk A, Chu PK, Wu H. A dual functional chondro-inductive chitosan thermogel with high shear modulus and sustained drug release for cartilage tissue engineering. Int J Biol Macromol 2022; 205:638-650. [PMID: 35217083 DOI: 10.1016/j.ijbiomac.2022.02.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022]
Abstract
We report a chitosan-based nanocomposite thermogel with superior shear modulus resembling that of cartilage and dual pro-chondrogenic and anti-inflammatory functions. Two therapeutic agents, kartogenin (KGN) and diclofenac sodium (DS), are employed to promote chondrogenesis of stem cells and suppress inflammation, respectively. To extend the release time in a controlled manner, KGN is encapsulated in the uniform-sized starch microspheres and DS is loaded into the halloysite nanotubes. Both drug carriers are doped into the maleimide-modified chitosan hydrogel to produce a shear modulus of 167 ± 5 kPa that is comparable to that of articular cartilage (50-250 kPa). Owing to the hydrogel injectability and relatively suitable gelation time (5 ± 0.5 min) at 37 °C, this system potentially constitutes a manageable platform for clinical practice. Moreover, sustained linear drug release for over a month boosts chondro-differentiation of stem cells to eliminate the necessity for multiple administrations. Considering virtues such as thermogel strength and ability to co-deliver anti-inflammatory and chondro-inductive biomolecules continuously, the materials and strategy have promising potential in functional cartilage tissue engineering.
Collapse
Affiliation(s)
- Dorsa Dehghan-Baniani
- Department of Chemical and Biological Engineering, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9466, Iran
| | - Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Dong Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Reza Bagheri
- Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9466, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hongkai Wu
- Department of Chemical and Biological Engineering, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
2
|
Casein Microgels as Benzydamine Hydrochloride Carriers for Prolonged Release. MATERIALS 2022; 15:ma15041333. [PMID: 35207872 PMCID: PMC8875778 DOI: 10.3390/ma15041333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
This research aims to investigate the properties of nano- and micro-sized casein hydrogels crosslinked by sodium tripolyphosphate as drug delivery systems. Benzydamine hydrochloride was chosen as a model hydrophilic drug. The gels were synthesized by varying different parameters: casein concentration, casein/crosslinking ratio, and addition of ethanol as a co-solvent. The electrostatic attractive interactions between the casein and the sodium tripolyphosphate were confirmed by FTIR spectroscopy. The particle sizes was determined by dynamic light scattering and varied in the range between several hundred nanometers and several microns. The yield of the gelation process was high for all investigated samples and varied between 55.3% and 78.3%. The encapsulation efficiency of the particles was strongly influenced by the casein concentration and casein/crosslinker ratio and its values were between 4.6% and 22.4%. The release study confirmed that casein particles are useful as benzydamine carriers and ensured prolonged release over 72 h.
Collapse
|
3
|
Dehghan‐Baniani D, Mehrjou B, Chu PK, Wu H. A Biomimetic Nano-Engineered Platform for Functional Tissue Engineering of Cartilage Superficial Zone. Adv Healthc Mater 2021; 10:e2001018. [PMID: 32803848 DOI: 10.1002/adhm.202001018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/15/2020] [Indexed: 12/22/2022]
Abstract
Articular cartilage has limited regeneration capacity because of its acellular and avascular nature. Although tissue engineering has been shown to be life-saving, reforming cartilage zones required by the appropriate tissue functions are challenging. Herein, the need is addressed by designing and producing a nano-engineered structure mimicking the superficial zone (SZ) of articular cartilage. The substrate is based on silk with good mechanical properties in conjunction with nano-topographical and biochemical cues. Nanopillar arrays are produced on the silk surface to regulate the stem cell morphology rendering them with a flattened ellipsoidal shape that is similar to that of chondrocytes in the SZ of natural cartilage. The cell interactions are enhanced by nitrogen ion implantation and the biomolecule, kartogenin (KGN), is loaded to promote chondrogenesis of the stem cells and furthermore, a thermosensitive chitosan hydrogel is formed on the nanopatterned silk to produce rheological properties similar to those of a synovial fluid. Based on the in vitro results and mechanical properties, it is a desirable implantable smart structure mimicking the cartilage SZ with the ability of continuous drug release for cartilage regeneration.
Collapse
Affiliation(s)
- Dorsa Dehghan‐Baniani
- Department of Chemical and Biological Engineering Division of Biomedical Engineering The Hong Kong University of Science and Technology Hong Kong China
| | - Babak Mehrjou
- Department of Physics Department of Materials Science and Engineering Department of Biomedical Engineering City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Paul K. Chu
- Department of Physics Department of Materials Science and Engineering Department of Biomedical Engineering City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Hongkai Wu
- Department of Chemical and Biological Engineering Division of Biomedical Engineering The Hong Kong University of Science and Technology Hong Kong China
- Department of Chemistry The Hong Kong University of Science and Technology Hong Kong China
- Guangzhou First People's Hospital 1 Panfu Rd, Yuexiu District Guangzhou Guangdong Province China
| |
Collapse
|
4
|
Mehrjou B, Dehghan-Baniani D, Shi M, Shanaghi A, Wang G, Liu L, Qasim AM, Chu PK. Nanopatterned silk-coated AZ31 magnesium alloy with enhanced antibacterial and corrosion properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111173. [DOI: 10.1016/j.msec.2020.111173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/29/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
|