1
|
Sapuan SM, Harussani MM, Ismail AH, Zularifin Soh NS, Mohamad Azwardi MI, Siddiqui VU. Development of nanocellulose fiber reinforced starch biopolymer composites: a review. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Abstract
In the last few years, there are rising numbers for environmental waste due to factors such as plastic based food packaging that really need to get enough attention in order to prevent the issue from becoming worse and bringing disaster to society. Thus, the uses of plastic composite materials need to be reduced and need to be replaced with materials that are natural and have low degradation to preserve nature. Based on the statistics for the global, the production of plastic has been roughly calculated for passing 400 million metric tons every year and has a high probability of approaching the value of 500 million metric tons at the year of 2025 and this issue needs to be counteracted as soon as possible. Due to that, the increasing number for recent development of natural biopolymer, as an example starch, has been investigated as the substitution for the non-biodegradable biopolymer. Besides, among all biodegradable polymers, starch has been considered as promising substitution polymer due to its renewability, easy availability, and biodegradability. Apart from that, by the reinforcement from the nanocellulose, starch fiber has an increasing in terms of mechanical, barrier and thermal properties. In this review paper, we will be discussing the up-to-date development of nanocellulose fiber reinforced starch biopolymer composites throughout this century.
Collapse
Affiliation(s)
- Salit Mohd Sapuan
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Moklis Muhammad Harussani
- Energy Science and Engineering, Department of Transdisciplinary Science and Engineering , School of Environment and Society, Tokyo Institute of Technology , Meguro 152-8552 , Tokyo , Japan
| | - Aleif Hakimi Ismail
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Noorashikin Soh Zularifin Soh
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Mohamad Irsyad Mohamad Azwardi
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Vasi Uddin Siddiqui
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| |
Collapse
|
2
|
Wheat thermoplastic starch composite films reinforced with nanocellulose. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Abstract
The rising costs of non-renewable plastic and environmental concerns with their industrial usage have encouraged the study and development of renewable products. As an alternative, biological-based materials create a huge opportunity for a healthy and safe environment by replacing non-renewable plastic in a variety of applications. Wheat is one of the world’s most widely cultivated crops. Due to its mechanical and physical properties, wheat starch is vital in the biopolymer industry. Wheat thermoplastic starch exhibits useable properties when plasticizers, elevated temperatures and shear are present. Thus, make it very suitable to be used as packaging material. However, this material suffers from low mechanical properties, which limit its applications. Several studies looked at the feasibility of using plant components which is nanocellulose as a reinforcing agent in wheat starch thermoplastic composites. Overall, the addition of nanocellulose can improve the performance of wheat thermoplastic starch, especially for its mechanical properties. It can potentially be used in several areas of packaging and biomedical. The objective of this review is to discuss several achievements regarding wheat starch/nanocellulose-based composites. Several important aspects of the mechanical performance and the thermal properties of the composites were evaluated. The discussion on wheat starch and nanocellulose was also tackled in this review.
Collapse
|
3
|
Soleimani S, Heydari A, Fattahi M. Isolation and Characterization of Cellulose Nanocrystals from Waste Cotton Fibers Using Sulfuric Acid Hydrolysis. STARCH-STARKE 2022. [DOI: 10.1002/star.202200159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Soraya Soleimani
- Chemical Engineering Group, Faculty of Engineering University of Mohaghegh Ardabili Ardabil Iran
| | - Amir Heydari
- Chemical Engineering Group, Faculty of Engineering University of Mohaghegh Ardabili Ardabil Iran
| | - Moslem Fattahi
- Chemical Engineering Department, Abadan Faculty of Petroleum Engineering Petroleum University of Technology Abadan Iran
| |
Collapse
|
4
|
Kittipongpatana OS, Trisopon K, Wattanaarsakit P, Kittipongpatana N. Fabrication and Characterization of Orodispersible Composite Film from Hydroxypropylmethyl Cellulose-Crosslinked Carboxymethyl Rice Starch. MEMBRANES 2022; 12:membranes12060594. [PMID: 35736301 PMCID: PMC9227285 DOI: 10.3390/membranes12060594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023]
Abstract
Crosslinked carboxymethyl rice starch (CLCMRS), prepared via dual modifications of native rice starch (NRS) with chloroacetic acid and sodium trimetaphosphate, was employed to facilitate the disintegration of hydroxypropylmethylcellulose (HPMC) orodispersible films (ODFs), with or without the addition of glycerol. Fabricated by using the solvent casting method, the composite films, with the HPMC--LCMRS ratios of 9:1, 7:1, 5:1 and 4:1, were then subjected to physicochemical and mechanical evaluations, including weight, thickness, moisture content and moisture absorption, swelling index, transparency, folding endurance, scanning electron microscopy, Fourier transform infrared spectroscopy, tensile strength, elongation at break, and Young’s modulus, as well as the determination of disintegration time by using the Petri dish method (PDM) and slide frame and bead method (SFM). The results showed that HPMC-CLCMRS composite films exhibited good film integrity, uniformity, and transparency with up to 20% CLCMRS incorporation (4:1 ratio). Non-plasticized composite films showed no significant changes in the average weight, thickness, density, folding endurance (96−122), tensile strength (2.01−2.13 MPa) and Young’s modulus (10.28−11.59 MPa) compared to HPMC film (135, 2.24 MPa, 10.67 MPa, respectively). On the other hand, the moisture content and moisture absorption were slightly higher, whereas the elongation at break (EAB; 4.31−5.09%) and the transparency (4.73−6.18) were slightly lowered from that of the HPMC film (6.03% and 7.03%, respectively). With the addition of glycerol as a plasticizer, the average weight and film thickness increased, and the density decreased. The folding endurance was improved (to >300), while the transparency remained in the acceptable range. Although the tensile strength of most composite films decreased (0.66−1.75 MPa), they all exhibited improved flexibility (EAB 7.27−11.07%) while retaining structural integrity. The disintegration times of most composite films (PDM 109−331, SFM 70−214 s) were lower than those of HPMC film (PDM 345, SFM 229 s). In conclusion, the incorporation of CLCMRS significantly improved the disintegration time of the composite films whereas it did not affect or only slightly affected the physicochemical and mechanical characteristics of the films. The 5:1 and 4:1 HPMC:CLCMRS composite films, in particular, showed promising potential application as a film base for the manufacturing of orodispersible film dosage forms.
Collapse
Affiliation(s)
- Ornanong S Kittipongpatana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Karnkamol Trisopon
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phanphen Wattanaarsakit
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nisit Kittipongpatana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Punia Bangar S, Whiteside WS, Dunno KD, Cavender GA, Dawson P, Love R. Starch-based bio-nanocomposites films reinforced with cellulosic nanocrystals extracted from Kudzu (Pueraria montana) vine. Int J Biol Macromol 2022; 203:350-360. [PMID: 35104472 DOI: 10.1016/j.ijbiomac.2022.01.133] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
In the current study, starch-based active nanocomposite films reinforced with cellulosic nanocrystals (CNCs) of Kudzu were developed as an alternative option to existing biodegradable plastic packaging. Firstly, Kudzu CNCs were prepared by subjecting Kudzu fibers to the processes such as depolymerization followed by bleaching, acid hydrolysis, and mechanical dispersion. Further, nanocomposite films were formulated by blending pearl millet starch (PMS) and glycerol (30%) with different Kudzu CNCs compositions (0-7 wt%) using the solution casting process. The prepared PMS/Kudzu CNCs nanocomposite films were analyzed for their morphological (SEM and TEM), thermal (TGA and DSC), structural (FTIR), mechanical (tensile strength (TS), elongation at break and young modulus), and water barrier properties. The PMS/Kudzu CNCs films possessed improved crystallinity, heat and moisture-barrier properties, TS, and young-modulus after reinforcement. The optimum reinforcer concentration of CNCs was 5%. The Kudzu CNCs reinforced starch film offers a promising candidate for developing biodegradable films.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, USA
| | | | - Kyle D Dunno
- Department of Packaging Science, Rochester Institute of Technology, Rochester, New York, USA
| | | | - Paul Dawson
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, USA
| | - Reid Love
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, USA
| |
Collapse
|
6
|
Jia R, Teng K, Huang J, Wei X, Qin Z. Hydrogen Bonding Crosslinking of Starch‐Polyvinyl Alcohol Films Reinforced by Ultrasound‐Assisted and Cellulose Nanofibers Dispersed Cellulose Nanocrystals. STARCH-STARKE 2022. [DOI: 10.1002/star.202100227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rui‐Jing Jia
- School of Resources Environment and Materials Guangxi University Nanning 530000 China
- MOE Key Laboratory of New Processing Technology for Non‐ferrous Metals and Materials Nanning Guangxi 530004 China
| | | | | | - Xin Wei
- School of Resources Environment and Materials Guangxi University Nanning 530000 China
- MOE Key Laboratory of New Processing Technology for Non‐ferrous Metals and Materials Nanning Guangxi 530004 China
| | - Zhi‐Yong Qin
- School of Resources Environment and Materials Guangxi University Nanning 530000 China
| |
Collapse
|
7
|
Mohammed AABA, Omran AAB, Hasan Z, Ilyas RA, Sapuan SM. Wheat Biocomposite Extraction, Structure, Properties and Characterization: A Review. Polymers (Basel) 2021; 13:polym13213624. [PMID: 34771181 PMCID: PMC8587943 DOI: 10.3390/polym13213624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
Biocomposite materials create a huge opportunity for a healthy and safe environment by replacing artificial plastic and materials with natural ingredients in a variety of applications. Furniture, construction materials, insulation, and packaging, as well as medical devices, can all benefit from biocomposite materials. Wheat is one of the world’s most widely cultivated crops. Due to its mechanical and physical properties, wheat starch, gluten, and fiber are vital in the biopolymer industry. Glycerol as a plasticizer considerably increased the elongation and water vapor permeability of wheat films. Wheat fiber developed mechanical and thermal properties as a result of various matrices; wheat gluten is water insoluble, elastic, non-toxic, and biodegradable, making it useful in biocomposite materials. This study looked at the feasibility of using wheat plant components such as wheat, gluten, and fiber in the biocomposite material industry.
Collapse
Affiliation(s)
- Abdulrahman A. B. A. Mohammed
- Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia; (A.A.B.A.M.); (Z.H.)
| | - Abdoulhdi A. Borhana Omran
- Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia; (A.A.B.A.M.); (Z.H.)
- Department of Mechanical Engineering, College of Engineering Science & Technology, Sebha University, Sabha 00218, Libya
- Correspondence: (A.A.B.O.); (R.A.I.); (S.M.S.)
| | - Zaimah Hasan
- Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia; (A.A.B.A.M.); (Z.H.)
| | - R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Correspondence: (A.A.B.O.); (R.A.I.); (S.M.S.)
| | - S. M. Sapuan
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (A.A.B.O.); (R.A.I.); (S.M.S.)
| |
Collapse
|
8
|
Bangar SP, Whiteside WS. Nano-cellulose reinforced starch bio composite films- A review on green composites. Int J Biol Macromol 2021; 185:849-860. [PMID: 34237362 DOI: 10.1016/j.ijbiomac.2021.07.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/23/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Plastic-based food packaging is generating a serious environmental problem by accumulating large amounts of plastic in the surroundings. Ecological and health concerns are driving research efforts for developing biodegradable films. There are few alternatives that could reduce the environmental impact; one of them is to substitute petroleum-based plastic with starch-based film. Starch has remarkable properties, including biodegradability, sustainability, abundancy, and capable of being modified or blended with other polymers. However, low mechanical strength and low water resistance restrict its application in food packaging. Nanocellulose isolated from lignocellulosic fibers has attracted tremendous interest in the field of science due to high crystallinity and mechanical strength, unique morphology along with abundancy, renewability, and biodegradability. Therefore, nano cellulose as a reinforcer proved to be a good option for fabricating biocomposites for food packaging. The current review will give a critical snapshot of the potential application of nanocellulose in food packaging and discuss new challenges and opportunities for starch biocomposites enriched with nano cellulose.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, USA.
| | | |
Collapse
|