1
|
Páramo-Calderón DE, Vázquez-León LA, Palma-Rodríguez HM, Utrilla-Coello RG, Vargas-Torres A, Meza-Nieto MA, Romero-Cortes T, Aparicio-Saguilán A. Effect of high-energy mechanical milling on the physicochemical and rheological properties of chayotextle (Sechium edule Sw.) starch. Food Chem 2023; 427:136720. [PMID: 37423046 DOI: 10.1016/j.foodchem.2023.136720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
This work evaluates the effect of high-energy mechanical milling time (7 levels, 20-80 min) on amylose content, crystallinity pattern, temperature and gelatinization enthalpy, morphology, and rheological properties of chayotextle (Sechium edule Sw.) starch. After 30 min of milling, granular structure was affected, and amylose values were the highest while crystallinity and gelatinization enthalpy decreased significantly. These changes allowed to obtain gels with viscoelastic properties where the elastic character (Ǵ) prevailed upon the viscous modulus (Ǵ́). Native starch showed Tan δ values of 0.6, increased significantly (0.9) after 30 min of milling due to the surge in linear chains (amylose) and loss of granular structure. Native and modified starches showed high dependence on cutting or shear speed, presenting a non-Newtonian behavior (reofluidizers). These results indicate that mechanical grinding is an alternative to obtain modified starches with applications in the food industry.
Collapse
Affiliation(s)
- Delia E Páramo-Calderón
- Ingeniería de Alimenos, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, 68301 Tuxtepec, OAX, Mexico
| | - Lucio A Vázquez-León
- Cátedra CONACyT-Instituto de Biotecnología, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial. C. P., 68301 Tuxtepec, Oax, Mexico
| | - Heidi M Palma-Rodríguez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Avenida Universidad km 1, Rancho Universitario, CP. 43600, Tulancingo de Bravo, Hidalgo, Mexico
| | - Rubí G Utrilla-Coello
- Ingeniería de Alimenos, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, 68301 Tuxtepec, OAX, Mexico
| | - Apolonio Vargas-Torres
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Avenida Universidad km 1, Rancho Universitario, CP. 43600, Tulancingo de Bravo, Hidalgo, Mexico
| | - Martín A Meza-Nieto
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Avenida Universidad km 1, Rancho Universitario, CP. 43600, Tulancingo de Bravo, Hidalgo, Mexico
| | - Teresa Romero-Cortes
- Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, carretera Apan-Calpulalpan, km 8, Chimalpa Tlalayotle s/n, C.P. 43900 Col. Chimalpa, Apan, Hidalgo, Mexico
| | - Alejandro Aparicio-Saguilán
- Ingeniería de Alimenos, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, 68301 Tuxtepec, OAX, Mexico.
| |
Collapse
|
2
|
Electron beam irradiation regulates the structure and functionality of ball-milled corn starch: The related mechanism. Carbohydr Polym 2022; 297:120016. [DOI: 10.1016/j.carbpol.2022.120016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022]
|
3
|
Wu Z, Qiao D, Zhao S, Lin Q, Zhang B, Xie F. Nonthermal physical modification of starch: An overview of recent research into structure and property alterations. Int J Biol Macromol 2022; 203:153-175. [PMID: 35092737 DOI: 10.1016/j.ijbiomac.2022.01.103] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
Abstract
To tailor the properties and enhance the applicability of starch, various ways of starch modification have been practiced. Among them, physical modification methods (micronization, nonthermal plasma, high-pressure, ultrasonication, pulsed electric field, and γ-irradiation) are highly potential for starch modification considering its safety, environmentally friendliness, and cost-effectiveness, without generating chemical wastes. Thus, this article provides an overview of the recent advances in nonthermal physical modification of starch and summarizes the resulting changes in the multi-level structures and physicochemical properties. While the effect of these techniques highly depends on starch type and treatment condition, they generally lead to the destruction of starch granules, the degradation of molecules, decreases in crystallinity, gelatinization temperatures, and viscosity, increases in solubility and swelling power, and an increase or decrease in digestibility, to different extents. The advantages and shortcomings of these techniques in starch processing are compared, and the knowledge gap in this area is commented on.
Collapse
Affiliation(s)
- Zhuoting Wu
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China.
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
4
|
Cruz EPD, Fonseca LM, Radünz M, Silva FTD, Gandra EA, Zavareze EDR, Borges CD. Pinhão coat extract encapsulated in starch ultrafine fibers: Thermal, antioxidant, and antimicrobial properties and in vitro biological digestion. J Food Sci 2021; 86:2886-2897. [PMID: 34057206 DOI: 10.1111/1750-3841.15779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/09/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
This study aimed to produce soluble potato starch ultrafine fibers for the encapsulation of pinhão coat extract (PCE), evaluating their relative crystallinity (RC), thermal stability, antioxidant activity, antimicrobial activity against Escherichia coli and Staphylococcus aureus, as well as in vitro biological digestion. In the simulation of in vitro biological digestion, the phenolic compounds release profile was also evaluated. The ultrafine fibers were produced by electrospinning, based on a polymeric solution composed of soluble potato starch (50% w/v) and formic acid. Then, PCE was incorporated at various concentrations (0.5%, 1.0%, and 1.5%, w/w, dry basis). The endothermic event of free PCE was not observed in the ultrafine fibers, which suggests its encapsulation. The RC decreased according to the increase in PCE concentration in the ultrafine fibers. The PCE resisted thermal treatments when encapsulated into the ultrafine fibers (100 and 180°C), and the ultrafine fibers with 1% PCE presented the highest amount of preserved phenolic compounds. Regarding antioxidant activity, the free PCE presented 85% of DPPH inhibition and the ultrafine fibers had 18% inhibition, not differing among the PCE concentrations (p < 0.05). The free PCE and the ultrafine fibers with 0.5% PCE showed inhibitory effect against S. aureus and the ones with 1.5% PCE showed controlled release of phenolic compounds during the simulation of in vitro digestion. Starch ultrafine fibers showed potential to be applied in food industries due to their capacity of protecting phenolic compounds when submitted to high temperatures or gastrointestinal conditions. Nevertheless, their application depends on the end use of the product. PRACTICAL APPLICATION: The encapsulation of pinhão coat extract (PCE) in ultrafine starch fibers promotes greater preservation of phenolic compounds. Thus, it can be incorporated into different foods that are produced using the ultra-high temperature (UHT) process-at 135-145°C for 5 to 10 s, or some other equivalent time/temperature combination. Another possibility is the incorporation of ultrafine fibers in active packaging: compounds can migrate to food, improving sensory characteristics, increasing shelf life, preventing chemical and microbiological deterioration, and ensuring food safety.
Collapse
Affiliation(s)
- Elder Pacheco da Cruz
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil.,Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil
| | - Laura Martins Fonseca
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Marjana Radünz
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Eliezer Avila Gandra
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil
| | | | | |
Collapse
|
5
|
Korkut A, Kahraman K. Production of cross-linked resistant starch from tapioca starch and effect of reaction conditions on the functional properties, morphology, X‑ray pattern, FT-IR spectra and digestibility. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00764-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Alarcon RT, Lamb KJ, Bannach G, North M. Opportunities for the Use of Brazilian Biomass to Produce Renewable Chemicals and Materials. CHEMSUSCHEM 2021; 14:169-188. [PMID: 32975380 DOI: 10.1002/cssc.202001726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/24/2020] [Indexed: 06/11/2023]
Abstract
This Review highlights the principal crops of Brazil and how their harvest waste can be used in the chemicals and materials industries. The Review covers various plants; with grains, fruits, trees and nuts all being discussed. Native and adopted plants are included and studies on using these plants as a source of chemicals and materials for industrial applications, polymer synthesis, medicinal use and in chemical research are discussed. The main aim of the Review is to highlight the principal Brazilian agricultural resources; such as sugarcane, oranges and soybean, as well as secondary resources, such as andiroba brazil nut, buriti and others, which should be explored further for scientific and technological applications. Furthermore, vegetable oils, carbohydrates (starch, cellulose, hemicellulose, lignocellulose and pectin), flavones and essential oils are described as well as their potential applications.
Collapse
Affiliation(s)
- Rafael T Alarcon
- School of Sciences, Department of Chemistry, UNESP- São Paulo State University, Bauru, 17033-260, SP, Brazil
| | - Katie J Lamb
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| | - Gilbert Bannach
- School of Sciences, Department of Chemistry, UNESP- São Paulo State University, Bauru, 17033-260, SP, Brazil
| | - Michael North
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|