1
|
Ahani E, Montazer M, Mianehro A, Samadi N, Toliyat T, Rad MM. Encapsulation of the PHMB with nanoliposome and attachment to wound dressing for long-term antibacterial activity and biocompatibility. World J Microbiol Biotechnol 2024; 40:361. [PMID: 39441496 DOI: 10.1007/s11274-024-04170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Concentration control of some drug are used commonly however their uncontrolled concentration renders severe side effects. Therefore, it is substantial to come up with innovation release control methods. There is a strong affinity between the phospholipid of nanoliposomes and wool cells which facilitate the diffusion of liposomes into the wool structure. On the other hand, polyhexamethylene biguanide (PHMB) has gained popularity as an antibacterial agent; however, the compound's cytotoxicity has limited its usefulness. By compounding these facts, this work introduces a novel method for sustained drug release via internalization. In this method, PHMB was detained into nanoliposomes infiltrated the wool to generate an extremely regulated release, which was established using various techniques. SEM pictures demonstrated effective absorption of nanoliposome-encapsulated PHMB within the wool fabric. The developed wound dressing showed a sustained drug release, and consequently, perfect biocompatibility and enduring antibacterial activity.
Collapse
Affiliation(s)
- Elnaz Ahani
- Azad University, Science and Research Unit, Tehran, Iran
| | - Majid Montazer
- Functional Fibrous Structures & Environmental Enhancement (FFSEE), Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
- Textile Department, Amirkabir University of Technology, 424 Hafez Ave, Tehran, 15875-4413, Iran.
| | - Ali Mianehro
- Textile Department, Amirkabir University of Technology, 424 Hafez Ave, Tehran, 15875-4413, Iran
| | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Toliyat
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Mahmoudi Rad
- Phytochemistry Research Center, Shahid Beheshti Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Qin H, Lv Y, Nakane K. In situ growth of Bi-MOF on cotton fabrics via ultrasonic synthesis strategy for recyclable photocatalytic textiles. RSC Adv 2024; 14:11513-11523. [PMID: 38595718 PMCID: PMC11002839 DOI: 10.1039/d4ra00493k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Bismuth-based metal-organic framework (Bi-MOF) materials have shown potential for treating organic pollutants. In this work, multifunctional textiles were produced by in situ synthesis of CAU-17 on carboxymethylated cotton fabrics by solvothermal and ultrasonic strategies and employed as recyclable photocatalysts. The compositional and structural features of the dense MOF crystal coatings on cotton fibers were confirmed by scanning electron microscopy, X-ray diffraction, and other characterization approaches. Under optimized conditions, the developed functionalized cotton fabrics achieved a photodegradation efficiency of 98.8% under visible light for RhB in water, as well as good recyclability. The described results have provided the basis and reference for the fabrication of MOF-functionalized textiles.
Collapse
Affiliation(s)
- Hengjie Qin
- Frontier Fiber Technology and Science, University of Fukui Bunkyo 3-9-1 Fukui 910-8507 Japan
| | - Ying Lv
- New Energy College, Xi'an Shiyou University No. 18 East Section 2nd Dianzi Road Xi'an 710065 China
| | - Koji Nakane
- Frontier Fiber Technology and Science, University of Fukui Bunkyo 3-9-1 Fukui 910-8507 Japan
| |
Collapse
|
3
|
Yao X, Chen X, Sun Y, Yang P, Gu X, Dai X. Application of metal-organic frameworks-based functional composite scaffolds in tissue engineering. Regen Biomater 2024; 11:rbae009. [PMID: 38420353 PMCID: PMC10900102 DOI: 10.1093/rb/rbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 03/02/2024] Open
Abstract
With the rapid development of materials science and tissue engineering, a variety of biomaterials have been used to construct tissue engineering scaffolds. Due to the performance limitations of single materials, functional composite biomaterials have attracted great attention as tools to improve the effectiveness of biological scaffolds for tissue repair. In recent years, metal-organic frameworks (MOFs) have shown great promise for application in tissue engineering because of their high specific surface area, high porosity, high biocompatibility, appropriate environmental sensitivities and other advantages. This review introduces methods for the construction of MOFs-based functional composite scaffolds and describes the specific functions and mechanisms of MOFs in repairing damaged tissue. The latest MOFs-based functional composites and their applications in different tissues are discussed. Finally, the challenges and future prospects of using MOFs-based composites in tissue engineering are summarized. The aim of this review is to show the great potential of MOFs-based functional composite materials in the field of tissue engineering and to stimulate further innovation in this promising area.
Collapse
Affiliation(s)
- Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xinran Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yu Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
4
|
Yuan J, Zeng Y, Pan Z, Feng Z, Bao Y, Ye Z, Li Y, Tang J, Liu X, He Y. Amino-Functionalized Zirconium-Based Metal-Organic Frameworks as Bifunctional Nanomaterials to Treat Bone Tumors and Promote Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53217-53227. [PMID: 37943099 DOI: 10.1021/acsami.3c11787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Bone tumor patients often encounter challenges associated with cancer cell residues and bone defects postoperation. To address this, there is an urgent need to develop a material that can enable tumor treatment and promote bone repair. Metal-organic frameworks (MOFs) have attracted the interest of many researchers due to their special porous structure, which has great potential in regenerative medicine and drug delivery. However, few studies explore MOFs with dual antitumor and bone regeneration properties. In this study, we investigated amino-functionalized zirconium-based MOF nanoparticles (UiO-66-NH2 NPs) as bifunctional nanomaterials for bone tumor treatment and osteogenesis promotion. UiO-66-NH2 NPs loading with doxorubicin (DOX) (DOX@UiO-66-NH2 NPs) showed good antitumor efficacy both in vitro and in vivo. Additionally, DOX@UiO-66-NH2 NPs significantly reduced lung injury compared to free DOX in vivo. Interestingly, the internalized UiO-66-NH2 NPs notably promoted the osteogenic differentiation of preosteoblasts. RNA-sequencing data revealed that PI3K-Akt signaling pathways or MAPK signaling pathways might be involved in this enhanced osteogenesis. Overall, UiO-66-NH2 NPs exhibit dual functionality in tumor treatment and bone repair, making them highly promising as a bifunctional material with broad application prospects.
Collapse
Affiliation(s)
- Jiongpeng Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenxing Pan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - ZhenZhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Bao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhaoyi Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yushan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Junze Tang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Vodyashkin AA, Sergorodceva AV, Kezimana P, Stanishevskiy YM. Metal-Organic Framework (MOF)-A Universal Material for Biomedicine. Int J Mol Sci 2023; 24:7819. [PMID: 37175523 PMCID: PMC10178275 DOI: 10.3390/ijms24097819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a very promising platform for applications in various industries. In recent years, a variety of methods have been developed for the preparation and modification of MOFs, providing a wide range of materials for different applications in life science. Despite the wide range of different MOFs in terms of properties/sizes/chemical nature, they have not found wide application in biomedical practices at present. In this review, we look at the main methods for the preparation of MOFs that can ensure biomedical applications. In addition, we also review the available options for tuning the key parameters, such as size, morphology, and porosity, which are crucial for the use of MOFs in biomedical systems. This review also analyses possible applications for MOFs of different natures. Their high porosity allows the use of MOFs as universal carriers for different therapeutic molecules in the human body. The wide range of chemical species involved in the synthesis of MOFs makes it possible to enhance targeting and prolongation, as well as to create delivery systems that are sensitive to various factors. In addition, we also highlight how injectable, oral, and even ocular delivery systems based on MOFs can be used. The possibility of using MOFs as therapeutic agents and sensitizers in photodynamic, photothermal, and sonodynamic therapy was also reviewed. MOFs have demonstrated high selectivity in various diagnostic systems, making them promising for future applications. The present review aims to systematize the main ways of modifying MOFs, as well as the biomedical applications of various systems based on MOFs.
Collapse
Affiliation(s)
- Andrey A. Vodyashkin
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| | - Antonina V. Sergorodceva
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| | - Parfait Kezimana
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
- Department of Agrobiotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| |
Collapse
|
6
|
Azbell TJ, Mandel RM, Lee JH, Milner PJ. Reactive Chlorine Capture by Dichlorination of Alkene Linkers in Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53928-53935. [PMID: 36413751 PMCID: PMC10022271 DOI: 10.1021/acsami.2c17966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chlorine (Cl2) is a toxic and corrosive gas that is both an essential reagent in industry and a potent chemical warfare agent. Materials that can strongly bind Cl2 at low pressures are essential for industrial and civilian personal protective equipment (PPE). Herein, we report the first examples of irreversible Cl2 capture via the dichlorination of alkene linkages in Zr-based metal-organic frameworks. Frameworks constructed from fumarate (Zr-fum) and stilbene (Zr-stilbene) linkers retain long-range order and accessible porosity after alkene dichlorination. In addition, energy-dispersive X-ray spectroscopy reveals an even distribution of Cl throughout both materials after Cl2 capture. Cl2 uptake experiments reveal high irreversible uptake of Cl2 (>10 wt %) at low partial pressures (<100 mbar), particularly in Zr-fum. In contrast, traditional porous carbons mostly display reversible Cl2 capture, representing a continued risk to users after exposure. Overall, our results support that alkene dichlorination represents a new pathway for reactive Cl2 capture, opening new opportunities for binding this gas irreversibly in PPE.
Collapse
Affiliation(s)
- Tyler J. Azbell
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Ruth M. Mandel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| |
Collapse
|
7
|
Lu S, Fu M, Wang Y, Li P, Xia X, Guo L, Li C, Li F. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Magnetic Fe–Fe3O4/UiO-66. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Singh N, Tapader R, Chatterjee S, Pal A, Pal A. Subtilisin from Bacillus amyloliquefaciens induces apoptosis in breast cancer cells through ubiquitin-proteasome-mediated tubulin degradation. Int J Biol Macromol 2022; 220:852-865. [PMID: 35985398 DOI: 10.1016/j.ijbiomac.2022.08.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022]
Abstract
To search for novel proteases from environmental isolates which can induce apoptosis in cancer cells, we have purified subtilisin from Bacillus amyloliquefaciens and studied its anti-cancer properties. Subtilisin induced apoptosis in colon (HT29) and breast (MCF7) cancer cells but showed no effect on mouse peritoneal macrophages and normal breast cells (MCF10A). Western blot analysis showed that Bax, Bcl-2 level remained unchanged but tubulin level decreased significantly. Subtilisin does not induce the intrinsic pathway of apoptosis, rather it induced tubulin degradation in MCF-7 cells, whereas in normal cells (MCF-10A) tubulin degradation was not observed. Subtilisin activates ubiquitination and proteasomal-mediated tubulin degradation which was completely restored in presence of proteasome inhibitor MG-132. We further observed PARKIN, one of the known E3-ligase, is overexpressed and interacts with tubulin in subtilisin treated cells. Knockdown of PARKIN effectively downregulates ubiquitination and inhibits degradation of tubulin. PARKIN activation and tubulin degradation lead to ER-stress which in turn activates caspase-7 and PARP cleavage, thus guiding the subtilisin treated cells towards apoptosis. To our knowledge this is the first report of subtilisin induced apoptosis in cancer cells by proteasomal degradation of tubulin.
Collapse
Affiliation(s)
- Nanda Singh
- Division of Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (NICED), Kolkata 700010, India
| | - Rima Tapader
- Division of Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (NICED), Kolkata 700010, India
| | - Shruti Chatterjee
- Division of Biotechnology and Phycology, CSIR-Central Salt & Marine Chemical Research Institute, Bhavnagar 364002, India
| | - Ananda Pal
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases (NICED), Kolkata 700010, India
| | - Amit Pal
- Division of Pathophysiology, ICMR-National Institute of Cholera and Enteric Diseases (NICED), Kolkata 700010, India.
| |
Collapse
|
9
|
Masoudi G, Montazer M, Ezazshahabi N, Mianehro A, Mahmoudirad M. Biocompatible antibacterial denim fabric prepared via green synthesis of the copper oxide nanoparticles using raw sugar molasses. STARCH-STARKE 2022. [DOI: 10.1002/star.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ghazaleh Masoudi
- Textile Department, Center of Excellence in Textile Amirkabir University of Technology Tehran Iran
| | - Majid Montazer
- Textile Department, Center of Excellence in Textile Amirkabir University of Technology Tehran Iran
- Functional Fibrous Structures & Environmental Enhancement (FFSEE), Department of Textile Engineering Amirkabir University of Technology Tehran Iran
| | - Nazanin Ezazshahabi
- Textile Department, Center of Excellence in Textile Amirkabir University of Technology Tehran Iran
| | - Ali Mianehro
- Textile Department, Center of Excellence in Textile Amirkabir University of Technology Tehran Iran
| | | |
Collapse
|
10
|
Lakhani M, Azim S, Akhtar S, Ahmad Z. Inhibition of Escherichia coli ATP synthase and cell growth by dietary pomegranate phenolics. Int J Biol Macromol 2022; 213:195-209. [PMID: 35597381 DOI: 10.1016/j.ijbiomac.2022.05.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022]
Abstract
Historically, people have been using pomegranate to alleviate many disease conditions. Pomegranate is known for its antiinflammatory, antioxidant, neuroprotective, anticancer, and antibacterial properties. In the current study, we examined effects of 8 dietary phenolics present in pomegranate (DPPs)-cyanidin-3-glucoside, cyanin chloride, delphinidin-3-glucoside, delphinidin-3,5-diglucoside, pelargonidin-3-glucoside, pelargonin chloride, punicalagin, and punicalin-on Escherichia coli ATP synthase and cell growth. DPPs caused complete or near complete (89%-100%) inhibition of wild-type E. coli ATP synthase and partial (5%-64%) inhibition of mutant enzymes αR283D, αE284R, βV265Q, and γT273A. Growth inhibition of wild-type, null, and mutant strains in the presence of DPPs were lower than that of isolated wild-type and mutant ATP synthase. On a molar scale, cyanin chloride was the most potent, and pelargonidin-3-glucoside was the least effective inhibitor of wild-type ATP synthase. Partial inhibition of mutant enzymes confirmed that αR283D, αE284R, βV265Q, and γT273A are essential in the formation of the phytochemical binding site. Our results establish that DPPs are potent inhibitors of wild-type E. coli ATP synthase and that the antimicrobial nature of DPPs can be associated with the binding and inhibition of microbial ATP synthase. Additionally, selective inhibition of microbial ATP synthase by DPPs is a useful method to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Muhaib Lakhani
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA
| | - Samiya Azim
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
| | - Suhail Akhtar
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA
| | - Zulfiqar Ahmad
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA.
| |
Collapse
|
11
|
Nematollahi MR, Montazer M, Mianehro A. Multifunctional Composite Based on Cotton Fabric and Starch‐Copper Ferrite Hydrogel Prepared through Facile Room Temperature Preparation Approach. STARCH-STARKE 2022. [DOI: 10.1002/star.202100222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mohammad Reza Nematollahi
- Department of Textile Engineering Amirkabir University of Technology Functional Fibrous Structures & Environmental Enhancement (FFSEE) No. 424, Hafez Ave. Tehran 15875‐4413 Iran
| | - Majid Montazer
- Department of Textile Engineering Amirkabir University of Technology Functional Fibrous Structures & Environmental Enhancement (FFSEE) No. 424, Hafez Ave. Tehran 15875‐4413 Iran
| | - Ali Mianehro
- Department of Textile Engineering Amirkabir University of Technology Functional Fibrous Structures & Environmental Enhancement (FFSEE) No. 424, Hafez Ave. Tehran 15875‐4413 Iran
| |
Collapse
|
12
|
Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214263] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|