1
|
Zhang ZA, Xun XM, Herman RA, Zhang ZP, Yan CH, Gong LC, Wang J. Mulberry (Morus alba L.) leaf powder modified the processing of meat alternatives: Principal component analysis from apparent properties to chemical bonds. Food Chem 2024; 450:139318. [PMID: 38613965 DOI: 10.1016/j.foodchem.2024.139318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
For texture control in plant-meat alternatives, the interrelationship between apparent characteristics and chemical bonds in high-fiber formulations remains unclear. The influence of mulberry leaf powder on apparent characteristics and chemical bonds of raw materials, block and strip products at addition amounts of 0.5-25% was analyzed. The results showed that 8% addition significantly increased the chewiness of the block by 98.12%. The strips' texture shows a downward trend, and the processing produced more redness and color difference. Additives promoted the formation of voids, lamellar and filamentous structures, and the strip produced more striped structures. Disulfide bonds significantly increased in the block, and the β-turn in the secondary structure enhanced by 12.20%. The β-turn transformed into a β-sheet in strips. Principal component analysis revealed that the texture improvement was associated with producing disulfide bonds and β-turn, providing a basis for high-fiber components to improve products' apparent characteristics by chemical bonds.
Collapse
Affiliation(s)
- Zhi-Ang Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiao-Meng Xun
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhan-Peng Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Cheng-Hai Yan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lu-Chan Gong
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
2
|
Jang J, Lee DW. Advancements in plant based meat analogs enhancing sensory and nutritional attributes. NPJ Sci Food 2024; 8:50. [PMID: 39112506 PMCID: PMC11306346 DOI: 10.1038/s41538-024-00292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The burgeoning demand for plant-based meat analogs (PBMAs) stems from environmental, health, and ethical concerns, yet replicating the sensory attributes of animal meat remains challenging. This comprehensive review explores recent innovations in PBMA ingredients and methodologies, emphasizing advancements in texture, flavor, and nutritional profiles. It chronicles the transition from soy-based first-generation products to more diversified second- and third-generation PBMAs, showcasing the utilization of various plant proteins and advanced processing techniques to enrich sensory experiences. The review underscores the crucial role of proteins, polysaccharides, and fats in mimicking meat's texture and flavor and emphasizes research on new plant-based sources to improve product quality. Addressing challenges like production costs, taste, texture, and nutritional adequacy is vital for enhancing consumer acceptance and fostering a more sustainable food system.
Collapse
Affiliation(s)
- Jiwon Jang
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Dong-Woo Lee
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea.
- Department of Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
3
|
McClements DJ. Novel animal product substitutes: A new category of plant-based alternatives to meat, seafood, egg, and dairy products. Compr Rev Food Sci Food Saf 2024; 23:e313330. [PMID: 38551190 DOI: 10.1111/1541-4337.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Many consumers are adopting plant-centric diets to address the adverse effects of livestock production on the environment, health, and animal welfare. Processed plant-based foods, including animal product analogs (such as meat, seafood, egg, or dairy analogs) and traditional animal product substitutes (such as tofu, seitan, or tempeh), may not be desirable to a broad spectrum of consumers. This article introduces a new category of plant-based foods specifically designed to overcome the limitations of current animal product analogs and substitutes: novel animal product substitutes (NAPS). NAPS are designed to contain high levels of nutrients to be encouraged (such as proteins, omega-3 fatty acids, dietary fibers, vitamins, and minerals) and low levels of nutrients to be discouraged (such as salt, sugar, and saturated fat). Moreover, they may be designed to have a wide range of appearances, textures, mouthfeels, and flavors. For instance, they could be red, orange, green, yellow, blue, or beige; they could be spheres, ovals, cubes, or pyramids; they could be hard/soft or brittle/pliable; and they could be lemon, thyme, curry, or chili flavored. Consequently, there is great flexibility in creating NAPS that could be eaten in situations where animal products are normally consumed, for example, with pasta, rice, potatoes, bread, soups, or salads. This article reviews the science behind the formulation of NAPS, highlights factors impacting their appearance, texture, flavor, and nutritional profile, and discusses methods that can be used to formulate, produce, and characterize them. Finally, it stresses the need for further studies on this new category of foods, especially on their sensory and consumer aspects.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
4
|
Oh Y, Lee S, Lee NK, Rhee JK. Improving the Three-Dimensional Printability of Potato Starch Loaded onto Food Ink. J Microbiol Biotechnol 2024; 34:891-901. [PMID: 38379303 DOI: 10.4014/jmb.2311.11040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
This study focuses on improving the 3D printability of pea protein with the help of food inks designed for jet-type 3D printers. Initially, the food ink base was formulated using nanocellulose-alginate with a gradient of native potato starch and its 3D printability was evaluated. The 3D-printed structures using only candidates for the food ink base formulated with or without potato starch exhibited dimensional accuracy exceeding 95% on both the X and Y axes. However, the accuracy of stacking on the Z-axis was significantly affected by the ink composition. Food ink with 1% potato starch closely matched the CAD design, with an accuracy of approximately 99% on the Z-axis. Potato starch enhanced the stacking of 3D-printed structures by improving the electrostatic repulsion, viscoelasticity, and thixotropic behavior of the food ink base. The 3D printability of pea protein was evaluated using the selected food ink base, showing a 46% improvement in dimensional accuracy on the Z-axis compared to the control group printed with a food ink base lacking potato starch. These findings suggest that starch can serve as an additive support for high-resolution 3D jet-type printing of food ink material.
Collapse
Affiliation(s)
- Yourim Oh
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seungmin Lee
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Nam Keun Lee
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jin-Kyu Rhee
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
5
|
Falua KJ, Babaei-Ghazvini A, Acharya B. Comparative study of the structure and mechanical properties of starch aerogels fabricated from air-classified and isolated pulse starches. Int J Biol Macromol 2024; 257:128478. [PMID: 38029915 DOI: 10.1016/j.ijbiomac.2023.128478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Significant amounts of starch and protein are generated as co-products during fractionation of pulse seeds. While pulse proteins (PP) have garnered a lot of interest in numerous applications, little attention is shown to pulse starch (PS). The creation of novel materials such as bioplastics could revolutionize the use of pulse starches. In this study, we investigated the prospects of air-classified and isolated pea, lentil, and faba bean starches as a precursor for fabricating pulse starch bioaerogels (PSBs) via freeze-drying technique. The results evidenced ultra-low densities (<0.1 m2/g), mesopore sizes (2-50 μm), high porosities (∼99 %), low surface areas (SBET = ∼4-18 m2/g) for all the aerogels. The adsorption isotherm showed typical Type II and III profiles, while the thermogravimetric analysis showed more weight loss (74.39-78.12 %) in aerogels mostly developed from isolated starches. Microstructural studies showed a unique distribution of pores within the developed aerogels. FTIR and XPS studies confirmed the presence of an amide (I, II, III) at different absorption bands range (∼1600-1200 cm-1) and functional groups (carboxylic group and the amide group), respectively. All the PSBs became stiffer with a corresponding increase in load, and a reversible deformation in the linear region was identified at <5 % strain. Comparatively, saturated PSBs from air-classified starch at a relative humidity of 95 % showed a drastic reduction in their compressive moduli (CM), while PSBs from isolated starch experienced markedly high CM. Moisture saturation was achieved at 72 h for all the samples. This study provides crucial information that could spark a keen interest in the use of non-conventional starch for the creation of novel and sustainable biobased products with expanded applications.
Collapse
Affiliation(s)
- Kehinde James Falua
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
6
|
Herdiana Y, Sofian FF, Shamsuddin S, Rusdiana T. Towards halal pharmaceutical: Exploring alternatives to animal-based ingredients. Heliyon 2024; 10:e23624. [PMID: 38187251 PMCID: PMC10770512 DOI: 10.1016/j.heliyon.2023.e23624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Halal is a crucial concept for Muslim consumers regarding consumed products, including pharmaceutical ingredients, which are essential in modern medicine. To address the issue of using porcine-sourced ingredients in pharmaceuticals, it is essential to search for halal alternatives derived from poultry, animal by-products from meat processing, marine sources, and plants. However, the complexity of this problem is further compounded by the rapid advances in innovation and technology, which can lead to adulteration of ingredients derived from pigs. Other challenges include the sustainability of alternative materials, management of waste or by-products practice, halal awareness, certification, government policies, religious adherence of consumers, food suppliers, marketers, and purchasing of products. The importance of halal and non-halal problems, specifically in the context of pharmaceutical materials, is still rarely discussed, including alternatives derived from poultry, animal by-products, marine sources, and plants. Due to the increasing global population, there is a growing need to increase awareness and concern among Muslim consumers for halal products, including pharmaceuticals. Therefore, this research aimed to investigate the importance of halal and non-halal issues in pharmaceutical ingredients, the potential impact on the Muslim community, as well as opportunities and challenges in the search for alternative ingredients.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Halal Food Pharmaceutical and Healthcare Society, Faculty of Pharmacy, Padjadjaran University, Sumedang, 45363, Indonesia
| | - Ferry Ferdiansyah Sofian
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Padjadjaran University, Sumedang, 45363, Indonesia
- Halal Food Pharmaceutical and Healthcare Society, Faculty of Pharmacy, Padjadjaran University, Sumedang, 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), USM, 11800, Penang, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), 11800, USM, Penang, Malaysia
| | - Taofik Rusdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
7
|
Chen S, Dima C, Kharazmi MS, Yin L, Liu B, Jafari SM, Li Y. The colloid and interface strategies to inhibit lipid digestion for designing low-calorie food. Adv Colloid Interface Sci 2023; 321:103011. [PMID: 37826977 DOI: 10.1016/j.cis.2023.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Although fat is one of the indispensable components of food flavor, excessive fat consumption could cause obesity, metabolism syndromes and an imbalance in the intestinal flora. In the pursuit of a healthy diet, designing fat reducing foods by inhibiting lipid digestion and calorie intake is a promising strategy. Altering the gastric emptying rates of lipids as well as acting on the lipase by suppressing the enzymatic activity or limiting lipase diffusion via interfacial modulation can effectively decrease lipolysis rates. In this review, we provide a comprehensive overview of colloid-based strategies that can be employed to retard lipid hydrolysis, including pancreatic lipase inhibitors, emulsion-based interfacial modulation and fat substitutes. Plants-/microorganisms-derived lipase inhibitors bind to catalytic active sites and change the enzymatic conformation to inhibit lipase activity. Introducing oil-in-water Pickering emulsions into the food can effectively delay lipolysis via steric hindrance of interfacial particulates. Regulating stability and physical states of emulsions can also affect the rate of hydrolysis by altering the active hydrolysis surface. 3D network structure assembled by fat substitutes with high viscosity can not only slow down the peristole and obstruct the diffusion of lipase to the oil droplets but also impede the transportation of lipolysis products to epithelial cells for adsorption. Their applications in low-calorie bakery, dairy and meat products were also discussed, emphasizing fat intake reduction, structure and flavor retention and potential health benefits. However, further application of these strategies in large-scale food production still requires more optimization on cost and lipid reducing effects. This review provides a comprehensive review on colloidal approaches, design, principles and applications of fat reducing strategies to meet the growing demand for healthier diet and offer practical insights for the low-calorie food industry.
Collapse
Affiliation(s)
- Shanan Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Cristian Dima
- Dunarea de Jos' University of Galati, Faculty of Food Science and Engineering, "Domnească" Str. 111, Building F, Room 107, 800201, Galati, Romania
| | | | - Lijun Yin
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
8
|
Arora S, Kataria P, Nautiyal M, Tuteja I, Sharma V, Ahmad F, Haque S, Shahwan M, Capanoglu E, Vashishth R, Gupta AK. Comprehensive Review on the Role of Plant Protein As a Possible Meat Analogue: Framing the Future of Meat. ACS OMEGA 2023; 8:23305-23319. [PMID: 37426217 PMCID: PMC10323939 DOI: 10.1021/acsomega.3c01373] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023]
Abstract
Animal proteins from meat and goods derived from meat have recently been one of the primary concerns in the quest for sustainable food production. According to this perspective, there are exciting opportunities to reformulate more sustainably produced meat products that may also have health benefits by partially replacing meat with nonmeat substances high in protein. Considering these pre-existing conditions, this review critically summarizes recent findings on extenders from a variety of sources, including pulses, plant-based ingredients, plant byproducts, and unconventional sources. It views these findings as a valuable opportunity to improve the technological profile and functional quality of meat, with a focus on their ability to affect the sustainability of meat products. As a result, meat substitutes like plant-based meat analogues (PBMAs), meat made from fungi, and cultured meat are being offered to encourage sustainability.
Collapse
Affiliation(s)
- Shubhangi Arora
- Department
of Food Science and Technology, Graphic
Era (Deemed to be University), Bell Road, Clement Town
Dehradun, 248002 Uttrakhand, India
| | - Priyanka Kataria
- Department
of Food Science and Technology, Graphic
Era (Deemed to be University), Bell Road, Clement Town
Dehradun, 248002 Uttrakhand, India
| | - Mansi Nautiyal
- Department
of Food Science and Technology, Graphic
Era (Deemed to be University), Bell Road, Clement Town
Dehradun, 248002 Uttrakhand, India
| | - Ishika Tuteja
- Department
of Food Science and Technology, Graphic
Era (Deemed to be University), Bell Road, Clement Town
Dehradun, 248002 Uttrakhand, India
| | - Vaishnavi Sharma
- Department
of Food Science and Technology, Graphic
Era (Deemed to be University), Bell Road, Clement Town
Dehradun, 248002 Uttrakhand, India
| | - Faraz Ahmad
- Department
of Biotechnology, School of Bio Science and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Gilbert
and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Moyad Shahwan
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Rahul Vashishth
- Department
of Biosciences, School of Bio Science and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Arun Kumar Gupta
- Department
of Food Science and Technology, Graphic
Era (Deemed to be University), Bell Road, Clement Town
Dehradun, 248002 Uttrakhand, India
| |
Collapse
|
9
|
Squeo G, Latrofa V, Vurro F, De Angelis D, Caponio F, Summo C, Pasqualone A. Developing a Clean Labelled Snack Bar Rich in Protein and Fibre with Dry-Fractionated Defatted Durum Wheat Cake. Foods 2023; 12:2547. [PMID: 37444284 DOI: 10.3390/foods12132547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The shift towards a vegetarian, vegan, or flexitarian diet has increased the demand for vegetable protein and plant-based foods. The defatted cake generated during the extraction of lipids from durum wheat (Triticum turgidum L. var. durum) milling by-products is a protein and fibre-containing waste, which could be upcycled as a food ingredient. This study aimed to exploit the dry-fractionated fine fraction of defatted durum wheat cake (DFFF) to formulate a vegan, clean labelled, cereal-based snack bar. The design of experiments (DoEs) for mixtures was applied to formulate a final product with optimal textural and sensorial properties, which contained 10% DFFF, 30% glucose syrup, and a 60% mix of puffed/rolled cereals. The DFFF-enriched snack bar was harder compared to the control without DFFF (cutting stress = 1.2 and 0.52 N/mm2, and fracture stress = 12.9 and 9.8 N/mm2 in the DFFF-enriched and control snack bar, respectively), due to a densifying effect of DFFF, and showed a more intense yellow hue due to the yellow-brownish colour of DFFF. Another difference was in the caramel flavour, which was more intense in the DFFF-enriched snack bar. The nutritional claims "low fat" and "source of fibre" were applicable to the DFFF-enriched snack bar according to EC Reg. 1924/06.
Collapse
Affiliation(s)
- Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Vittoria Latrofa
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Francesca Vurro
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Davide De Angelis
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy
| |
Collapse
|
10
|
van der Sman R, van der Goot A. Hypotheses concerning structuring of extruded meat analogs. Curr Res Food Sci 2023; 6:100510. [PMID: 37275388 PMCID: PMC10236473 DOI: 10.1016/j.crfs.2023.100510] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023] Open
Abstract
In this paper, we review the physicochemical phenomena occurring during the structuring processes in the manufacturing of plant-based meat analogs via high-moisture-extrusion (HME). After the initial discussion on the input materials, we discuss the hypotheses behind the physics of the functional tasks that can be defined for HME. For these hypotheses, we have taken a broader view than only the scientific literature on plant-based meat analogs but incorporated also literature from soft matter physics and patent literature. Many of these hypotheses remain to be proven. Hence, we hope that this overview will inspire researchers to fill the still-open knowledge gaps concerning the multiscale structure of meat analogs.
Collapse
Affiliation(s)
- R.G.M. van der Sman
- Wageningen Food Biobased Research, the Netherlands
- Food Process Engineering, Wageningen University, the Netherlands
| | | |
Collapse
|
11
|
Mohd Shukri A, Cheng LH. The Properties of Different Starches under the Influence of Glucono-Delta-Lactone at Different Concentrations. Foods 2023; 12:foods12091770. [PMID: 37174308 PMCID: PMC10178128 DOI: 10.3390/foods12091770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, glucono-delta-lactone (GDL), which is Generally Recognized as Safe (GRAS), was added to native starches to modify their physicochemical properties. The effects of GDL on the molecular weight, pasting properties, flow behavior, gel syneresis, and crystallization properties of potato, tapioca, and corn starches were investigated. GPC results showed that as the GDL concentration increased, the molecular weight of amylose increased, whereas that of amylopectin decreased. An analysis using the Rapid Visco Analyzer revealed that the addition of GDL improved the pasting properties of potato starch, with reduced peak viscosity and breakdown viscosity, and it also improved setback viscosity. On the other hand, tapioca starch degraded substantially after GDL addition, indicating a lower tendency for short-term retrogradation, as reflected in the lower setback viscosity. The effects of GDL on corn starch pasting properties were very similar to those observed for tapioca starch, but the changes were relatively subtle. In terms of flow behavior, GDL addition decreased and increased the flow index values of the potato and tapioca starch pastes, respectively. However, the effect of GDL addition on the flow index value of the corn starch paste was found to be insignificant. The results also showed that the percentage of syneresis under the influence of GDL depended on the starch botanical origin-that is, potato starch, 14-18%, tapioca starch, 10-13%, and corn starch, 17-20%-which was substantiated by crystallinity analysis. It was observed that GDL has the potential to be used for starch modification because it creates desirable functionalities with the advantage of being a green-labelled ingredient.
Collapse
Affiliation(s)
- Afirah Mohd Shukri
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
| | - Lai-Hoong Cheng
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
| |
Collapse
|
12
|
Scott G, Awika JM. Effect of protein-starch interactions on starch retrogradation and implications for food product quality. Compr Rev Food Sci Food Saf 2023; 22:2081-2111. [PMID: 36945176 DOI: 10.1111/1541-4337.13141] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Starch retrogradation is a consequential part of food processing that greatly impacts the texture and acceptability of products containing both starch and proteins, but the effect of proteins on starch retrogradation has only recently been explored. With the increased popularity of plant-based proteins in recent years, incorporation of proteins into starch-based products is more commonplace. These formulation changes may have unforeseen effects on ingredient functionality and sensory outcomes of starch-containing products during storage, which makes the investigation of protein-starch interactions and subsequent impact on starch retrogradation and product quality essential. Protein can inhibit or promote starch retrogradation based on its exposed residues. Charged residues promote charge-dipole interactions between starch-bound phosphate and protein, hydrophobic groups restrict amylose release and reassociation, while hydrophilic groups impact water/molecular mobility. Covalent bonds (disulfide linkages) formed between proteins may enhance starch retrogradation, while glycosidic bonds formed between starch and protein during high-temperature processing may limit starch retrogradation. With these protein-starch interactions in mind, products can be formulated with proteins that enhance or delay textural changes in starch-containing products. Future work to understand the impact of starch-protein interactions on retrogradation should focus on integrating the fields of proteomics and carbohydrate chemistry. This interdisciplinary approach should result in better methods to characterize mechanisms of interaction between starch and proteins to optimize their food applications. This review provides useful interpretations of current literature characterizing the mechanistic effect of protein on starch retrogradation.
Collapse
Affiliation(s)
- Gabrielle Scott
- Department of Food Science and Technology, Texas A&M University, College Station, Texas, USA
| | - Joseph M Awika
- Department of Food Science and Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
13
|
Lu Z, Liu Y, Lee YEJ, Chan A, Lee PR, Yang H. Effect of starch addition on the physicochemical properties, molecular interactions, structures, and in vitro digestibility of the plant-based egg analogues. Food Chem 2023; 403:134390. [DOI: 10.1016/j.foodchem.2022.134390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
|
14
|
Xia Y, Qian J, Zhao Y, Zheng B, Wei K, Peng B, Yuan J, Xing C, Yan W. Effects of food components and processing parameters on plant‐based meat texture formation and evaluation methods. J Texture Stud 2022. [DOI: 10.1111/jtxs.12718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Yujie Xia
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | - Jing Qian
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| | - Yicheng Zhao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | - Bin Zheng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | - Kaidong Wei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | | | - Jian Yuan
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | - Changrui Xing
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | - Wenjing Yan
- College of Food Science and Technology Nanjing Agricultural University Nanjing China
| |
Collapse
|
15
|
Bühler JM, van der Goot AJ, Bruins ME. Fibrous Structures from Starch and Gluten. Polymers (Basel) 2022; 14:polym14183818. [PMID: 36145963 PMCID: PMC9501054 DOI: 10.3390/polym14183818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Starch is added to meat analogues for binding and water holding. In this study, we investigate whether starch can have an additional role as a structuring agent. Therefore, different types of starch were combined with wheat gluten at various amounts and sheared in a High Temperature Shear Cell to determine how starch influences the structuring behavior of gluten–starch blends. The starches were chosen based on their diverse amylose contents, leading to different technological properties. Remarkable differences were found between the starches investigated. The addition of Amioca starch (containing 1% amylose) had a strong negative influence on the ability of gluten to form fibers. Maize starch (25% amylose) and Hylon VII (68% amylose) formed fibrous materials up to high starch additions. The pre-gelatinizing of maize starch further increased the ability of gluten–starch mixtures to form fibrous structures. The influence of the different types of starch on the hardness, deformability, and stiffness of the sheared samples was also assessed, revealing a spectrum of achievable properties through the addition of starch. Most remarkable was the formation of a material with anisotropy in Young’s modules. This anisotropy is also found in chicken meat, but not in protein-based fibrous materials. Furthermore, it was observed that the pre-gelatinization of starch facilitated fiber formation. A similar effect of pre-gelatinizing the starch was found when using faba bean meal with added wheat gluten, where fibrous structures could even be formed in a recipe that previously failed to produce such structures without pre-treatment.
Collapse
Affiliation(s)
- Jan M. Bühler
- Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- Food Process Engineering, Agrotechnology and Food Sciences Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Atze Jan van der Goot
- Food Process Engineering, Agrotechnology and Food Sciences Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- Correspondence:
| | - Marieke E. Bruins
- Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
16
|
Molfetta M, Morais EG, Barreira L, Bruno GL, Porcelli F, Dugat-Bony E, Bonnarme P, Minervini F. Protein Sources Alternative to Meat: State of the Art and Involvement of Fermentation. Foods 2022; 11:2065. [PMID: 35885308 PMCID: PMC9319875 DOI: 10.3390/foods11142065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 12/29/2022] Open
Abstract
Meat represents an important protein source, even in developing countries, but its production is scarcely sustainable, and its excessive consumption poses health issues. An increasing number of Western consumers would replace, at least partially, meat with alternative protein sources. This review aims at: (i) depicting nutritional, functional, sensory traits, and critical issues of single-cell proteins (SCP), filamentous fungi, microalgae, vegetables (alone or mixed with milk), and insects and (ii) displaying how fermentation could improve their quality, to facilitate their use as food items/ingredients/supplements. Production of SCP (yeasts, filamentous fungi, microalgae) does not need arable land and potable water and can run continuously, also using wastes and byproducts. Some filamentous fungi are also consumed as edible mushrooms, and others are involved in the fermentation of traditional vegetable-based foods. Cereals, pseudocereals, and legumes may be combined to offer an almost complete amino acid profile. Fermentation of such vegetables, even in combination with milk-based products (e.g., tarhana), could increase nutrient concentrations, including essential amino acids, and improve sensory traits. Different insects could be used, as such or, to increase their acceptability, as ingredient of foods (e.g., pasta). However, insects as a protein source face with safety concerns, cultural constraints, and a lack of international regulatory framework.
Collapse
Affiliation(s)
- Mariagrazia Molfetta
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| | - Etiele G. Morais
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (E.G.M.); (L.B.)
| | - Luisa Barreira
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (E.G.M.); (L.B.)
| | - Giovanni Luigi Bruno
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| | - Eric Dugat-Bony
- UMR SayFood, INRAE, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, 78850 Thiverval-Grignon, France; (E.D.-B.); (P.B.)
| | - Pascal Bonnarme
- UMR SayFood, INRAE, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, 78850 Thiverval-Grignon, France; (E.D.-B.); (P.B.)
| | - Fabio Minervini
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| |
Collapse
|