1
|
Ju D, Dong C. The combined application of stem cells and three-dimensional bioprinting scaffolds for the repair of spinal cord injury. Neural Regen Res 2024; 19:1751-1758. [PMID: 38103241 PMCID: PMC10960285 DOI: 10.4103/1673-5374.385842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 12/18/2023] Open
Abstract
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system. Following surgery, the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality. Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord. Consequently, there is a critical need to develop new treatments to promote functional repair after spinal cord injury. Over recent years, there have been several developments in the use of stem cell therapy for the treatment of spinal cord injury. Alongside significant developments in the field of tissue engineering, three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures. This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization. These three-dimensional bioprinting scaffolds could repair damaged neural circuits and had the potential to repair the damaged spinal cord. In this review, we discuss the mechanisms underlying simple stem cell therapy, the application of different types of stem cells for the treatment of spinal cord injury, and the different manufacturing methods for three-dimensional bioprinting scaffolds. In particular, we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Dingyue Ju
- Department of Anatomy, Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, Jiangsu Province, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Xiong Y, Pi W, Zhao W, Shi W, Yan W, Yang H, Zhou Y, Li Q, Yang L. Roles of cerebrospinal fluid-contacting neurons as potential neural stem cells in the repair and regeneration of spinal cord injuries. Front Cell Dev Biol 2024; 12:1426395. [PMID: 38983786 PMCID: PMC11231923 DOI: 10.3389/fcell.2024.1426395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Cerebrospinal fluid-contacting neurons (CSF-cNs) represent a distinct group of interneurons characterized by their prominent apical globular protrusions penetrating the spinal cord's central canal and their basal axons extending towards adjacent cells. Identified nearly a century back, the specific roles and attributes of CSF-cNs have just started to emerge due to the historical lack of definitive markers. Recent findings have confirmed that CSF-cNs expressing PKD2L1 possess attributes of neural stem cells, suggesting a critical function in the regeneration processes following spinal cord injuries. This review aims to elucidate the molecular markers of CSF-cNs as potential neural stem cells during spinal cord development and assess their roles post-spinal cord injury, with an emphasis on their potential therapeutic implications for spinal cord repair.
Collapse
Affiliation(s)
- Yanxiang Xiong
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenjun Pi
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wang Zhao
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Weiwei Shi
- Department of Medical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Weihong Yan
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hao Yang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanrong Zhou
- Department of Health, The Qinglong County People’s Hospital, Qinglong, Guizhou, China
| | - Qing Li
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Leiluo Yang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Jenkner S, Clark JM, Gronthos S, O’Hare Doig RL. Molars to Medicine: A Focused Review on the Pre-Clinical Investigation and Treatment of Secondary Degeneration following Spinal Cord Injury Using Dental Stem Cells. Cells 2024; 13:817. [PMID: 38786039 PMCID: PMC11119219 DOI: 10.3390/cells13100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) can result in the permanent loss of mobility, sensation, and autonomic function. Secondary degeneration after SCI both initiates and propagates a hostile microenvironment that is resistant to natural repair mechanisms. Consequently, exogenous stem cells have been investigated as a potential therapy for repairing and recovering damaged cells after SCI and other CNS disorders. This focused review highlights the contributions of mesenchymal (MSCs) and dental stem cells (DSCs) in attenuating various secondary injury sequelae through paracrine and cell-to-cell communication mechanisms following SCI and other types of neurotrauma. These mechanistic events include vascular dysfunction, oxidative stress, excitotoxicity, apoptosis and cell loss, neuroinflammation, and structural deficits. The review of studies that directly compare MSC and DSC capabilities also reveals the superior capabilities of DSC in reducing the effects of secondary injury and promoting a favorable microenvironment conducive to repair and regeneration. This review concludes with a discussion of the current limitations and proposes improvements in the future assessment of stem cell therapy through the reporting of the effects of DSC viability and DSC efficacy in attenuating secondary damage after SCI.
Collapse
Affiliation(s)
- Sandra Jenkner
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
| | - Jillian Mary Clark
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Mesenchymal Stem Cell Laboratory, Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia
| | - Ryan Louis O’Hare Doig
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| |
Collapse
|
4
|
Liu D, Shen H, Zhang K, Shen Y, Wen R, He X, Long G, Li X. Functional Hydrogel Co-Remolding Migration and Differentiation Microenvironment for Severe Spinal Cord Injury Repair. Adv Healthc Mater 2024; 13:e2301662. [PMID: 37937326 DOI: 10.1002/adhm.202301662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Spinal cord injury (SCI) activates nestin+ neural stem cells (NSCs), which can be regarded as potential seed cells for neuronal regeneration. However, the lesion microenvironment seriously hinders the migration of the nestin+ cells to the lesion epicenter and their differentiation into neurons to rebuild neural circuits. In this study, a photosensitive hydrogel scaffold is prepared as drug delivery carrier. Genetically engineered SDF1α and NT3 are designed and the scaffold is binary modified to reshape the lesion microenvironment. The binary modified scaffold can effectively induce the migration and neuronal differentiation of nestin+ NSCs in vitro. When implanted into a rat complete SCI model, many of the SCI-activated nestin+ cells migrate into the lesion site and give rise to neurons in short-term. Meanwhile, long-term repair results also show that implantation of the binary modified scaffold can effectively promote the maturation, functionalization and synaptic network reconstruction of neurons in the lesion site. In addition, animals treated with binary scaffold also showed better improvement in motor functions. The therapeutic strategy based on remolding the migration and neuronal differentiation lesion microenvironment provides a new insight into SCI repair by targeting activated nestin+ cells, which exhibits excellent clinical transformation prospects.
Collapse
Affiliation(s)
- Dingyang Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - He Shen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Yeyu Shen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Runlin Wen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Xinghui He
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Ge Long
- Department of Anesthesia, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410078, China
| | - Xing Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| |
Collapse
|
5
|
Falco MV, Fabbiani G, Maciel C, Valdivia S, Vitureira N, Russo RE. P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord. Front Cell Neurosci 2023; 17:1288676. [PMID: 38164435 PMCID: PMC10757934 DOI: 10.3389/fncel.2023.1288676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/08/2023] [Indexed: 01/03/2024] Open
Abstract
The ependyma of the spinal cord is a latent stem cell niche that is reactivated by injury, generating new cells that migrate to the lesion site to limit the damage. The mechanisms by which ependymal cells are reactivated after injury remain poorly understood. ATP has been proposed to act as a diffusible "danger signal" to alert about damage and start repair. Indeed, spinal cord injury (SCI) generates an increase in extracellular ATP around the lesion epicenter that lasts for several hours and affects the functional outcome after the damage. The P2X7 receptor (P2X7r) has functional properties (e.g., low sensitivity for ATP, high permeability for Ca2+) that makes it a suitable candidate to act as a detector of tissue damage. Because ependymal cells express functional P2X7r that generate an inward current and regenerative Ca2+ waves, we hypothesize that the P2X7r has a main role in the mechanisms by which progenitor-like cells in the ependyma react to tissue damage. To test this possibility, we simulated the P2X7r activation that occurs after SCI by in vivo intraspinal injection of the selective agonist BzATP nearby the central canal. We found that BzATP rescued ependymal cells from quiescence by triggering a proliferative response similar to that generated by injury. In addition, P2X7r activation by BzATP induced a shift of ependymal cells to a glial fibrillary acidic protein (GFAP) phenotype similar to that induced by injury. However, P2X7r activation did not trigger the migration of ependyma-derived cells as occurs after tissue damage. Injection of BzATP induced the expression of connexin 26 (Cx26) in ependymal cells, an event needed for the proliferative reaction after injury. BzATP did not induce these changes in ependymal cells of P2X7-/- mice supporting a specific action on P2X7r. In vivo blockade of P2X7r with the potent antagonist AZ10606120 reduced significantly the injury-induced proliferation of ependymal cells. Our data indicate that P2X7r has a key role in the "awakening" of the ependymal stem cell niche after injury and suggest purinergic signaling is an interesting target to improve the contribution of endogenous progenitors to repair.
Collapse
Affiliation(s)
- María Victoria Falco
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Gabriela Fabbiani
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Cecilia Maciel
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Spring Valdivia
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Nathalia Vitureira
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Raúl E. Russo
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
6
|
Gorina YV, Salmina AB, Erofeev AI, Gerasimov EI, Bolshakova AV, Balaban PM, Bezprozvanny IB, Vlasova OL. Astrocyte Activation Markers. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:851-870. [PMID: 36180985 DOI: 10.1134/s0006297922090012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
Astrocytes are the most common type of glial cells that provide homeostasis and protection of the central nervous system. Important specific characteristic of astrocytes is manifestation of morphological heterogeneity, which is directly dependent on localization in a particular area of the brain. Astrocytes can integrate into neural networks and keep neurons active in various areas of the brain. Moreover, astrocytes express a variety of receptors, channels, and membrane transporters, which underlie their peculiar metabolic activity, and, hence, determine plasticity of the central nervous system during development and aging. Such complex structural and functional organization of astrocytes requires the use of modern methods for their identification and analysis. Considering the important fact that determining the most appropriate marker for polymorphic and multiple subgroups of astrocytes is of decisive importance for studying their multifunctionality, this review presents markers, modern imaging techniques, and identification of astrocytes, which comprise a valuable resource for studying structural and functional properties of astrocytes, as well as facilitate better understanding of the extent to which astrocytes contribute to neuronal activity.
Collapse
Affiliation(s)
- Yana V Gorina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia.
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Alla B Salmina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
- Laboratory of Neurobiology and Tissue Engineering, Brain Institute, Research Center of Neurology, Moscow, 105064, Russia
| | - Alexander I Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Evgeniy I Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Anastasia V Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Pavel M Balaban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity, Moscow, 117485, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga L Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| |
Collapse
|
7
|
Torrillas de la Cal A, Paniagua-Torija B, Arevalo-Martin A, Faulkes CG, Jiménez AJ, Ferrer I, Molina-Holgado E, Garcia-Ovejero D. The Structure of the Spinal Cord Ependymal Region in Adult Humans Is a Distinctive Trait among Mammals. Cells 2021; 10:2235. [PMID: 34571884 PMCID: PMC8469235 DOI: 10.3390/cells10092235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
In species that regenerate the injured spinal cord, the ependymal region is a source of new cells and a prominent coordinator of regeneration. In mammals, cells at the ependymal region proliferate in normal conditions and react after injury, but in humans, the central canal is lost in the majority of individuals from early childhood. It is replaced by a structure that does not proliferate after damage and is formed by large accumulations of ependymal cells, strong astrogliosis and perivascular pseudo-rosettes. We inform here of two additional mammals that lose the central canal during their lifetime: the Naked Mole-Rat (NMR, Heterocephalus glaber) and the mutant hyh (hydrocephalus with hop gait) mice. The morphological study of their spinal cords shows that the tissue substituting the central canal is not similar to that found in humans. In both NMR and hyh mice, the central canal is replaced by tissue reminiscent of normal lamina X and may include small groups of ependymal cells in the midline, partially resembling specific domains of the former canal. However, no features of the adult human ependymal remnant are found, suggesting that this structure is a specific human trait. In order to shed some more light on the mechanism of human central canal closure, we provide new data suggesting that canal patency is lost by delamination of the ependymal epithelium, in a process that includes apical polarity loss and the expression of signaling mediators involved in epithelial to mesenchymal transitions.
Collapse
Affiliation(s)
- Alejandro Torrillas de la Cal
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Beatriz Paniagua-Torija
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Christopher Guy Faulkes
- School of Biological & Chemical Sciences, Queen Mary University of London, London E1 4NS, UK;
| | - Antonio Jesús Jiménez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Isidre Ferrer
- Institut de Neuropatologia, Servei d’Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, 08908 L’Hospitalet de Llobregat, Spain;
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| |
Collapse
|
8
|
Jurčić N, Michelle C, Trouslard J, Wanaverbecq N, Kastner A. Evidence for PKD2L1-positive neurons distant from the central canal in the ventromedial spinal cord and medulla of the adult mouse. Eur J Neurosci 2021; 54:4781-4803. [PMID: 34097332 DOI: 10.1111/ejn.15342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022]
Abstract
Neurons in contact with the cerebrospinal fluid (CSF) are found around the medullo-spinal central canal (CC) in adult mice. These neurons (CSF-cNs), located within or below the ependymal cell layer, known as the stem cell niche, present a characteristic morphology with a dendrite projecting to the CC and ending with a protrusion. They are GABAergic, present an intermediate neuronal maturity and selectively express PKD2L1, a member of the transient receptor potential channel superfamily with sensory properties. Using immunohistological and electrophysiological recording techniques in mice, we characterize the properties of a new population of PKD2L1 positive cells that is distant from the CC in a zone enriched with astrocytes and ependymal fibers of the ventro-medial spinal cord and medulla. They appear around embryonic day 16 and their number increases up to early postnatal days. With development and the reorganization of the CC region, they progressively become more distant from the CC, suggesting some migratory capabilities. These neurons share functional and phenotypical properties with CSF-cNs but appear subdivided in two groups. One group, present along the midline, has a bipolar morphology and extends a long dendrite along ependymal fibers and towards the CC. The second group, localized in more ventro-lateral regions, has a multipolar morphology and no apparent projection to the CC. Altogether, we describe a novel population of PKD2L1+ neurons distant from the CC but with properties similar to CSF-cNs that might serve to sense modification in the composition of either CSF or interstitial liquid, a function that will need to be confirmed.
Collapse
Affiliation(s)
- Nina Jurčić
- Institut de Neurosciences de la Timone, Aix-Marseille Univ and CNRS UMR 7289, SpiCCI Team, Marseille, France
| | - Caroline Michelle
- Institut de Neurosciences de la Timone, Aix-Marseille Univ and CNRS UMR 7289, SpiCCI Team, Marseille, France
| | - Jérôme Trouslard
- Institut de Neurosciences de la Timone, Aix-Marseille Univ and CNRS UMR 7289, SpiCCI Team, Marseille, France
| | - Nicolas Wanaverbecq
- Institut de Neurosciences de la Timone, Aix-Marseille Univ and CNRS UMR 7289, SpiCCI Team, Marseille, France
| | - Anne Kastner
- Institut de Neurosciences de la Timone, Aix-Marseille Univ and CNRS UMR 7289, SpiCCI Team, Marseille, France
| |
Collapse
|
9
|
Abstract
Traumatic spinal cord injury (SCI) results in direct and indirect damage to neural tissues, which results in motor and sensory dysfunction, dystonia, and pathological reflex that ultimately lead to paraplegia or tetraplegia. A loss of cells, axon regeneration failure, and time-sensitive pathophysiology make tissue repair difficult. Despite various medical developments, there are currently no effective regenerative treatments. Stem cell therapy is a promising treatment for SCI due to its multiple targets and reactivity benefits. The present review focuses on SCI stem cell therapy, including bone marrow mesenchymal stem cells, umbilical mesenchymal stem cells, adipose-derived mesenchymal stem cells, neural stem cells, neural progenitor cells, embryonic stem cells, induced pluripotent stem cells, and extracellular vesicles. Each cell type targets certain features of SCI pathology and shows therapeutic effects via cell replacement, nutritional support, scaffolds, and immunomodulation mechanisms. However, many preclinical studies and a growing number of clinical trials found that single-cell treatments had only limited benefits for SCI. SCI damage is multifaceted, and there is a growing consensus that a combined treatment is needed.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, 34753West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Xiong
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| |
Collapse
|
10
|
Gong Z, Xia K, Xu A, Yu C, Wang C, Zhu J, Huang X, Chen Q, Li F, Liang C. Stem Cell Transplantation: A Promising Therapy for Spinal Cord Injury. Curr Stem Cell Res Ther 2021; 15:321-331. [PMID: 31441733 DOI: 10.2174/1574888x14666190823144424] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 07/21/2019] [Indexed: 12/20/2022]
Abstract
Spinal Cord Injury (SCI) causes irreversible functional loss of the affected population. The incidence of SCI keeps increasing, resulting in huge burden on the society. The pathogenesis of SCI involves neuron death and exotic reaction, which could impede neuron regeneration. In clinic, the limited regenerative capacity of endogenous cells after SCI is a major problem. Recent studies have demonstrated that a variety of stem cells such as induced Pluripotent Stem Cells (iPSCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cells (MSCs) and Neural Progenitor Cells (NPCs) /Neural Stem Cells (NSCs) have therapeutic potential for SCI. However, the efficacy and safety of these stem cellbased therapy for SCI remain controversial. In this review, we introduce the pathogenesis of SCI, summarize the current status of the application of these stem cells in SCI repair, and discuss possible mechanisms responsible for functional recovery of SCI after stem cell transplantation. Finally, we highlight several areas for further exploitation of stem cells as a promising regenerative therapy of SCI.
Collapse
Affiliation(s)
- Zhe Gong
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Ankai Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chenggui Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Xianpeng Huang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - QiXin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| |
Collapse
|
11
|
Connexin Signaling Is Involved in the Reactivation of a Latent Stem Cell Niche after Spinal Cord Injury. J Neurosci 2020; 40:2246-2258. [PMID: 32001613 DOI: 10.1523/jneurosci.2056-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/26/2022] Open
Abstract
The ependyma of the adult spinal cord is a latent stem cell niche that is reactivated by spinal cord injury contributing new cells to the glial scar. The cellular events taking place in the early stages of the reaction of the ependyma to injury remain little understood. Ependymal cells are functionally heterogeneous with a mitotically active subpopulation lining the lateral domains of the central canal (CC) that are coupled via gap junctions. Gap junctions and connexin hemichannels are key regulators of the biology of neural progenitors during development and in adult neurogenic niches. Thus, we hypothesized that communication via connexins in the CC is developmentally regulated and may play a part in the reactivation of this latent stem cell niche after injury. To test these possibilities, we combined patch-clamp recordings of ependymal cells with immunohistochemistry for various connexins in the neonatal and the adult (P > 90) normal and injured spinal cord of male and female mice. We find that coupling among ependymal cells is downregulated as postnatal development proceeds but increases after injury, resembling the immature CC. The increase in gap junction coupling in the adult CC was paralleled by upregulation of connexin 26, which correlated with the resumption of proliferation and a reduction of connexin hemichannel activity. Connexin blockade reduced the injury-induced proliferation of ependymal cells. Our findings suggest that connexins are involved in the early reaction of ependymal cells to injury, representing a potential target to improve the contribution of the CC stem cell niche to repair.SIGNIFICANCE STATEMENT Ependymal cells in the adult spinal cord are latent progenitors that react to injury to support some degree of endogenous repair. Understanding the mechanisms by which these progenitor-like cells are regulated in the aftermath of spinal cord injury is critical to design future manipulations aimed at improving healing and functional recovery. Gap junctions and connexin hemichannels are key regulators of the biology of neural progenitors during development and in adult neurogenic niches. We find here that connexin signaling in the ependyma changes after injury of the adult spinal cord, functionally resembling the immature active-stem cell niche of neonatal animals. Our findings suggest that connexins in ependymal cells are potential targets to improve self-repair of the spinal cord.
Collapse
|
12
|
Moreno-Manzano V. Ependymal cells in the spinal cord as neuronal progenitors. Curr Opin Pharmacol 2019; 50:82-87. [PMID: 31901616 DOI: 10.1016/j.coph.2019.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
Abstract
Ependymal cells are neural progenitors and form part of the central canal of the spinal cord. Therefore, ependymal cells could serve as a potential source of neural progenitors for regenerative medicine applications. Such applications consist of endogenous activation or exogenous transplantation, alone or in combination with pharmacological treatments, to repair spinal cord injuries. This mini review describes the main phenotypical characteristics of ependymal cells from spinal cord and the opportunities offered for spinal cord injury therapeutic application.
Collapse
Affiliation(s)
- Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
13
|
Di Bella DJ, Carcagno AL, Bartolomeu ML, Pardi MB, Löhr H, Siegel N, Hammerschmidt M, Marín-Burgin A, Lanuza GM. Ascl1 Balances Neuronal versus Ependymal Fate in the Spinal Cord Central Canal. Cell Rep 2019; 28:2264-2274.e3. [DOI: 10.1016/j.celrep.2019.07.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/07/2019] [Accepted: 07/23/2019] [Indexed: 01/04/2023] Open
|
14
|
Spinal Cord Stem Cells In Their Microenvironment: The Ependyma as a Stem Cell Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1041:55-79. [PMID: 29204829 DOI: 10.1007/978-3-319-69194-7_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ependyma of the spinal cord is currently proposed as a latent neural stem cell niche. This chapter discusses recent knowledge on the developmental origin and nature of the heterogeneous population of cells that compose this stem cell microenviroment, their diverse physiological properties and regulation. The chapter also reviews relevant data on the ependymal cells as a source of plasticity for spinal cord repair.
Collapse
|
15
|
Edwards-Faret G, Cebrián-Silla A, Méndez-Olivos EE, González-Pinto K, García-Verdugo JM, Larraín J. Cellular composition and organization of the spinal cord central canal during metamorphosis of the frog Xenopus laevis. J Comp Neurol 2018; 526:1712-1732. [PMID: 29603210 DOI: 10.1002/cne.24441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/12/2018] [Accepted: 03/21/2018] [Indexed: 01/12/2023]
Abstract
Studying the cellular composition and morphological changes of cells lining the central canal during Xenopus laevis metamorphosis could contribute to understand postnatal development and spinal cord regeneration. Here we report the analysis of central canal cells at different stages during metamorphosis using immunofluorescence for protein markers expression, transmission and scanning electron microscopy and cell proliferation assays. The central canal was regionalized according to expression of glial markers, ultrastructure, and proliferation in dorsal, lateral, and ventral domains with differences between larvae and froglets. In regenerative larvae, all cell types were uniciliated, have a radial morphology, and elongated nuclei with lax chromatin, resembling radial glial cells. Important differences in cells of nonregenerative froglets were observed, although uniciliated cells were found, the most abundant cells had multicilia and revealed extensive changes in the maturation and differentiation state. The majority of dividing cells in larvae corresponded to uniciliated cells at dorsal and lateral domains in a cervical-lumbar gradient, correlating with undifferentiated features. Neurons contacting the lumen of the central canal were detected in both stages and revealed extensive changes in the maturation and differentiation state. However, in froglets a very low proportion of cells incorporate 5-ethynyl-2'-deoxyuridine (EdU), associated with the differentiated profile and with the increase of multiciliated cells. Our work showed progressive changes in the cell types lining the central canal of Xenopus laevis spinal cord which are correlated with the regenerative capacities.
Collapse
Affiliation(s)
- Gabriela Edwards-Faret
- Center for Aging and Regeneration, Faculty of Biological Sciences, P. Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Arantxa Cebrián-Silla
- Laboratorio de Neurobiologia Comparada, Instituto Cavanilles, Universidad de Valencia, Valencia 46980, CIBERNED, Valencia, Spain
| | - Emilio E Méndez-Olivos
- Center for Aging and Regeneration, Faculty of Biological Sciences, P. Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Karina González-Pinto
- Center for Aging and Regeneration, Faculty of Biological Sciences, P. Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile.,Universidad Arturo Prat del Estado de Chile, Iquique, Chile
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiologia Comparada, Instituto Cavanilles, Universidad de Valencia, Valencia 46980, CIBERNED, Valencia, Spain
| | - Juan Larraín
- Center for Aging and Regeneration, Faculty of Biological Sciences, P. Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| |
Collapse
|
16
|
Marichal N, Reali C, Rehermann MI, Trujillo-Cenóz O, Russo RE. Progenitors in the Ependyma of the Spinal Cord: A Potential Resource for Self-Repair After Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:241-264. [DOI: 10.1007/978-3-319-62817-2_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
17
|
Katori S, Noguchi-Katori Y, Itohara S, Iwasato T. Spinal RacGAP α-Chimaerin Is Required to Establish the Midline Barrier for Proper Corticospinal Axon Guidance. J Neurosci 2017; 37:7682-7699. [PMID: 28747385 PMCID: PMC6596649 DOI: 10.1523/jneurosci.3123-16.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 05/11/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022] Open
Abstract
In the developing CNS, the midline barrier, which comprises guidance molecule-expressing midline glial somata and processes, plays a pivotal role in midline axon guidance. Accumulating evidence has revealed the molecular mechanisms by which the midline barrier ensures proper midline guidance for axons. In contrast, the mechanisms for establishing the midline barrier remain obscure. Here, we report that Rac-specific GTPase-activating protein (RacGAP) α-chimaerin is required for both axonal repulsion at and establishment of the midline barrier in the spinal cord. We generated cortex-specific and spinal-cord-specific α-chimaerin gene (Chn1) knock-out mice (Cx-Chn1KO and Sp-Chn1KO mice, respectively) and found that both showed aberrant corticospinal tract (CST) axon midline crossing in the spinal cord. Strikingly, Sp-Chn1KO mice had breaks (holes) in the ephrinB3(+) spinal midline barrier and EphA4(+) CST axons aberrantly crossed the midline through these holes. During normal embryonic development, EphA4(+) spinal cells are located in juxta-midline areas but are excluded from the midline. In contrast, in Chn1KO embryos, several EphA4(+) cells were aberrantly relocated into the midline and the midline barrier was broken around these cells. Similarly, the spinal cord midline of Epha4KO mice was invaded by juxta-midline EphA4 cells (i.e., Epha4 promoter-active cells) during the embryonic stage and holes were formed in the midline barrier. Juxta-midline EphA4 cells in the spinal cord expressed α-chimaerin. We propose that spinal α-chimaerin aids in establishing an intact spinal midline barrier by mediating juxta-midline EphA4(+) cell repulsion, thus preventing these cells from breaking into the ephrinB3(+) midline barrier.SIGNIFICANCE STATEMENT The midline barrier plays a critical role in midline axon guidance, which is fundamental to the formation of neural circuits that are responsible for proper left-right coordination of the body. Studies have revealed some of the mechanisms underlying how the midline barrier navigates axons. In contrast, the establishment of the midline barrier during embryonic development remains unclear. In this study, we determined that α-chimaerin is required for the formation of an intact midline barrier. Spinal-cord-specific α-chimaerin knock-out mice had spinal midline barriers with numerous breaks (holes), through which corticospinal axons aberrantly crossed the midline. We propose that α-chimaerin protects the midline barrier by mediating cell-repulsive signaling in juxta-midline cells, which prevents these cells from invading the midline.
Collapse
Affiliation(s)
- Shota Katori
- Division of Neurogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yukiko Noguchi-Katori
- Division of Neurogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan, and
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan,
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
18
|
Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. Biomaterials 2017; 137:73-86. [PMID: 28544974 DOI: 10.1016/j.biomaterials.2017.05.027] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 12/25/2022]
Abstract
Studies have shown that endogenous neural stem cells (NSCs) activated by spinal cord injury (SCI) primarily generate astrocytes to form glial scar. The NSCs do not differentiate into neurons because of the adverse microenvironment. In this study, we defined the activation timeline of endogenous NSCs in rats with severe SCI. These injury-activated NSCs then migrated into the lesion site. Cetuximab, an EGFR signaling antagonist, significantly increased neurogenesis in the lesion site. Meanwhile, implanting cetuximab modified linear ordered collagen scaffolds (LOCS) into SCI lesion sites in dogs resulted in neuronal regeneration, including neuronal differentiation, maturation, myelination, and synapse formation. The neuronal regeneration eventually led to a significant locomotion recovery. Furthermore, LOCS implantation could also greatly decrease chondroitin sulfate proteoglycan (CSPG) deposition at the lesion site. These findings suggest that endogenous neurogenesis following acute complete SCI is achievable in species ranging from rodents to large animals via functional scaffold implantation. LOCS-based Cetuximab delivery system has a promising therapeutic effect on activating endogenous neurogenesis, reducing CSPGs deposition and improving motor function recovery.
Collapse
|
19
|
Orts-Del’Immagine A, Trouslard J, Airault C, Hugnot JP, Cordier B, Doan T, Kastner A, Wanaverbecq N. Postnatal maturation of mouse medullo-spinal cerebrospinal fluid-contacting neurons. Neuroscience 2017; 343:39-54. [DOI: 10.1016/j.neuroscience.2016.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 11/27/2022]
|
20
|
Chrenek R, Magnotti LM, Herrera GR, Jha RM, Cardozo DL. Characterization of the Filum terminale as a neural progenitor cell niche in both rats and humans. J Comp Neurol 2016; 525:661-675. [PMID: 27511739 PMCID: PMC5216448 DOI: 10.1002/cne.24094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 01/24/2023]
Abstract
Neural stem cells (NSCs) reside in a unique microenvironment within the central nervous system (CNS) called the NSC niche. Although they are relatively rare, niches have been previously characterized in both the brain and spinal cord of adult animals. Recently, another potential NSC niche has been identified in the filum terminale (FT), which is a thin band of tissue at the caudal end of the spinal cord. While previous studies have demonstrated that NSCs can be isolated from the FT, the in vivo architecture of this tissue and its relation to other NSC niches in the CNS has not yet been established. In this article we report a histological analysis of the FT NSC niche in postnatal rats and humans. Immunohistochemical characterization reveals that the FT is mitotically active and its cells express similar markers to those in other CNS niches. In addition, the organization of the FT most closely resembles that of the adult spinal cord niche. J. Comp. Neurol. 525:661–675, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryan Chrenek
- Department of NeurobiologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Laura M. Magnotti
- Department of NeurobiologyHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Ruchira M. Jha
- Department of NeurobiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - David L. Cardozo
- Department of NeurobiologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
21
|
Marichal N, Fabbiani G, Trujillo-Cenóz O, Russo RE. Purinergic signalling in a latent stem cell niche of the rat spinal cord. Purinergic Signal 2016; 12:331-41. [PMID: 26988236 DOI: 10.1007/s11302-016-9507-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 03/07/2016] [Indexed: 01/11/2023] Open
Abstract
The ependyma of the spinal cord harbours stem cells which are activated by traumatic spinal cord injury. Progenitor-like cells in the central canal (CC) are organized in spatial domains. The cells lining the lateral aspects combine characteristics of ependymocytes and radial glia (RG) whereas in the dorsal and ventral poles, CC-contacting cells have the morphological phenotype of RG and display complex electrophysiological phenotypes. The signals that may affect these progenitors are little understood. Because ATP is massively released after spinal cord injury, we hypothesized that purinergic signalling plays a part in this spinal stem cell niche. We combined immunohistochemistry, in vitro patch-clamp whole-cell recordings and Ca(2+) imaging to explore the effects of purinergic agonists on ependymal progenitor-like cells in the neonatal (P1-P6) rat spinal cord. Prolonged focal application of a high concentration of ATP (1 mM) induced a slow inward current. Equimolar concentrations of BzATP generated larger currents that reversed close to 0 mV, had a linear current-voltage relationship and were blocked by Brilliant Blue G, suggesting the presence of functional P2X7 receptors. Immunohistochemistry showed that P2X7 receptors were expressed around the CC and the processes of RG. BzATP also generated Ca(2+) waves in RG that were triggered by Ca(2+) influx and propagated via Ca(2+) release from internal stores through activation of ryanodine receptors. We speculate that the intracellular Ca(2+) signalling triggered by P2X7 receptor activation may be an epigenetic mechanism to modulate the behaviour of progenitors in response to ATP released after injury.
Collapse
Affiliation(s)
- Nicolás Marichal
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
- Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry, Johannes Gutenberg University, Hanns-Dieter-Husch-Weg 19, Mainz, 55128, Germany
| | - Gabriela Fabbiani
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Omar Trujillo-Cenóz
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Raúl E Russo
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay.
| |
Collapse
|
22
|
Petracca YL, Sartoretti MM, Di Bella DJ, Marin-Burgin A, Carcagno AL, Schinder AF, Lanuza GM. The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord. Development 2016; 143:880-91. [PMID: 26839365 DOI: 10.1242/dev.129254] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/25/2016] [Indexed: 12/16/2022]
Abstract
Considerable progress has been made in understanding the mechanisms that control the production of specialized neuronal types. However, how the timing of differentiation contributes to neuronal diversity in the developing spinal cord is still a pending question. In this study, we show that cerebrospinal fluid-contacting neurons (CSF-cNs), an anatomically discrete cell type of the ependymal area, originate from surprisingly late neurogenic events in the ventral spinal cord. CSF-cNs are identified by the expression of the transcription factors Gata2 and Gata3, and the ionic channels Pkd2l1 and Pkd1l2. Contrasting with Gata2/3(+) V2b interneurons, differentiation of CSF-cNs is independent of Foxn4 and takes place during advanced developmental stages previously assumed to be exclusively gliogenic. CSF-cNs are produced from two distinct dorsoventral regions of the mouse spinal cord. Most CSF-cNs derive from progenitors circumscribed to the late-p2 and the oligodendrogenic (pOL) domains, whereas a second subset of CSF-cNs arises from cells bordering the floor plate. The development of these two subgroups of CSF-cNs is differentially controlled by Pax6, they adopt separate locations around the postnatal central canal and they display electrophysiological differences. Our results highlight that spatiotemporal mechanisms are instrumental in creating neural cell diversity in the ventral spinal cord to produce distinct classes of interneurons, motoneurons, CSF-cNs, glial cells and ependymal cells.
Collapse
Affiliation(s)
- Yanina L Petracca
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Maria Micaela Sartoretti
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Daniela J Di Bella
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Antonia Marin-Burgin
- Neuronal Plasticity Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Abel L Carcagno
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Alejandro F Schinder
- Neuronal Plasticity Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Guillermo M Lanuza
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| |
Collapse
|
23
|
Chu W, Yuan J, Huang L, Xiang X, Zhu H, Chen F, Chen Y, Lin J, Feng H. Valproic Acid Arrests Proliferation but Promotes Neuronal Differentiation of Adult Spinal NSPCs from SCI Rats. Neurochem Res 2015; 40:1472-86. [PMID: 26023063 DOI: 10.1007/s11064-015-1618-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/02/2015] [Accepted: 05/18/2015] [Indexed: 11/29/2022]
Abstract
Although the adult spinal cord contains a population of multipotent neural stem/precursor cells (NSPCs) exhibiting the potential to replace neurons, endogenous neurogenesis is very limited after spinal cord injury (SCI) because the activated NSPCs primarily differentiate into astrocytes rather than neurons. Valproic acid (VPA), a histone deacetylase inhibitor, exerts multiple pharmacological effects including fate regulation of stem cells. In this study, we cultured adult spinal NSPCs from chronic compressive SCI rats and treated with VPA. In spite of inhibiting the proliferation and arresting in the G0/G1 phase of NSPCs, VPA markedly promoted neuronal differentiation (β-tubulin III(+) cells) as well as decreased astrocytic differentiation (GFAP(+) cells). Cell cycle regulator p21(Cip/WAF1) and proneural genes Ngn2 and NeuroD1 were increased in the two processes respectively. In vivo, to minimize the possible inhibitory effects of VPA to the proliferation of NSPCs as well as avoid other neuroprotections of VPA in acute phase of SCI, we carried out a delayed intraperitoneal injection of VPA (150 mg/kg/12 h) to SCI rats from day 15 to day 22 after injury. Both of the newborn neuron marker doublecortin and the mature neuron marker neuron-specific nuclear protein were significantly enhanced after VPA treatment in the epicenter and adjacent segments of the injured spinal cord. Although the impaired corticospinal tracks had not significantly improved, Basso-Beattie-Bresnahan scores in VPA treatment group were better than control. Our study provide the first evidence that administration of VPA enhances the neurogenic potential of NSPCs after SCI and reveal the therapeutic value of delayed treatment of VPA to SCI.
Collapse
Affiliation(s)
- Weihua Chu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Plastic changes in the spinal cord in motor neuron disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:670756. [PMID: 24829911 PMCID: PMC4009217 DOI: 10.1155/2014/670756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/20/2014] [Indexed: 12/12/2022]
Abstract
In the present paper, we analyze the cell number within lamina X at the end stage of disease in a G93A mouse model of ALS; the effects induced by lithium; the stem-cell like phenotype of lamina X cells during ALS; the differentiation of these cells towards either a glial or neuronal phenotype. In summary we found that G93A mouse model of ALS produces an increase in lamina X cells which is further augmented by lithium administration. In the absence of lithium these nestin positive stem-like cells preferentially differentiate into glia (GFAP positive), while in the presence of lithium these cells differentiate towards a neuron-like phenotype (βIII-tubulin, NeuN, and calbindin-D28K positive). These effects of lithium are observed concomitantly with attenuation in disease progression and are reminiscent of neurogenetic effects induced by lithium in the subependymal ventricular zone of the hippocampus.
Collapse
|
25
|
Sevc J, Matiašová A, Kútna V, Daxnerová Z. Evidence that the central canal lining of the spinal cord contributes to oligodendrogenesis during postnatal development and adulthood in intact rats. J Comp Neurol 2014; 522:3194-207. [PMID: 24659141 DOI: 10.1002/cne.23590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/19/2013] [Accepted: 03/14/2014] [Indexed: 12/31/2022]
Abstract
Two waves of oligodendrogenesis in the ventricular zone of the spinal cord (SC-VZ) during rat development, which take place between embryonic days 14 and 18 (E14-E18) and E20-E21, have been described. In the VZ of the brain, unlike the SC-VZ, a third wave of oligodendrogenesis occurs during the first weeks of postnatal development. Using immunofluorescence staining of intact rat SC tissue, we noticed the presence of small numbers of Olig2(+) /Sox-10(+) cells inside the lining of the central canal (CC) during postnatal development and adulthood. Olig2(+) /Sox-10(+) cells appeared inside the lining of the CC shortly after birth, and their number reached a maximum of approximately 0.65 ± 0.14 cell/40-μm section during the second postnatal week. After the latter development, the number of Olig2(+) /Sox-10(+) cells decreased to 0.21 ± 0.07 (P36) and 0.18 ± 0.1 cell/section (P120). At P21, Olig2(+) /Sox-10(+) cells inside the CC lining started to express other oligodendroglial markers such as CNPase, RIP, and APC. Olig2(+) /Sox-10(+) cells usually did not proliferate inside the CC lining and were only rarely found to be immunoreactive against oligodendrocyte progenitor markers such as NG2 or PDGFRα. Using 5-bromo-2-deoxyuridine administration at P2, P11, P22, or P120-P125, we revealed that these cells arose in the CC lining during postnatal development and adulthood. Our findings confirmed that the CC lining is the source of a small number of cells with an oligodendroglial phenotype during postnatal development and adulthood in the SC of intact rats.
Collapse
Affiliation(s)
- Juraj Sevc
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 04167, Košice, Slovak Republic
| | | | | | | |
Collapse
|
26
|
A new angle on blood-CNS interfaces: A role for connexins? FEBS Lett 2014; 588:1259-70. [DOI: 10.1016/j.febslet.2014.02.060] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 12/12/2022]
|
27
|
Kútna V, Ševc J, Gombalová Z, Matiašová A, Daxnerová Z. Enigmatic cerebrospinal fluid-contacting neurons arise even after the termination of neurogenesis in the rat spinal cord during embryonic development and retain their immature-like characteristics until adulthood. Acta Histochem 2014; 116:278-85. [PMID: 24063862 DOI: 10.1016/j.acthis.2013.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/29/2022]
Abstract
Despite the abundance of cerebrospinal fluid-contacting neurons (CSF-cNs) lining the central canal of the spinal cord of mammals, little information is known regarding the phenotype and fate of these cells during development and in adulthood. Using immunofluorescence of spinal cord tissue of rats from the first postnatal day (P1) until the end of the 5th postnatal week (P36), we observed that these neurons show both immature (doublecortin+, β-III-tubulin+, neurofilament 200 kDa-) and more mature (weak NeuN+, P2X2+, GAD65+) characteristics during the first postnatal weeks. Because of the gradually decreasing number of CSF-cNs in the central canal lining during development, we were also interested in the migration potential of these cells. However, the assessment of the number of CSF-cNs in the lining of the central canal during postnatal development revealed that this decline is most likely associated with the growth of the spinal cord. Lastly, to reveal the birth date of CSF-cNs, we performed 5-bromo-2-deoxyuridine administration and colocalization analyses. We found that production of these cells appears from day 12 of embryonic development (E12) until E22. The vast majority of CSF-contacting neurons arise on E14 and E15. In contrast with other types of spinal neurons, the production of CSF-cNs is not restricted to a particular neuroepithelial region and occurs even after what is thought to be the termination of neurogenesis.
Collapse
Affiliation(s)
- Viera Kútna
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, Košice, Slovak Republic
| | - Juraj Ševc
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, Košice, Slovak Republic.
| | - Zuzana Gombalová
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, Košice, Slovak Republic
| | - Anna Matiašová
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, Košice, Slovak Republic
| | - Zuzana Daxnerová
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University, Košice, Slovak Republic
| |
Collapse
|
28
|
Trujillo-Cenóz O, Marichal N, Rehermann MI, Russo RE. The inner lining of the reptilian brain: A heterogeneous cellular mosaic. Glia 2013; 62:300-16. [DOI: 10.1002/glia.22607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/05/2013] [Accepted: 11/13/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Omar Trujillo-Cenóz
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| | - Nicolás Marichal
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| | - María Inés Rehermann
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| | - Raúl E. Russo
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| |
Collapse
|
29
|
Corns LF, Deuchars J, Deuchars SA. GABAergic responses of mammalian ependymal cells in the central canal neurogenic niche of the postnatal spinal cord. Neurosci Lett 2013; 553:57-62. [PMID: 23872091 PMCID: PMC3809510 DOI: 10.1016/j.neulet.2013.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 11/16/2022]
Abstract
Extensive dye-coupling occurs between mammalian spinal cord ependymal cells. GABA depolarised all spinal cord ependymal cells tested. GABA effects were mediated by GABAA receptors but not GABA uptake transporters.
The area surrounding the central canal of the postnatal mammalian spinal cord is a highly plastic region that exhibits many similarities to other postnatal neurogenic niches, such as the subventricular zone. Within this region, ependymal cells have been identified as neural stem cells however very little is known about their properties and how the local environment, including neurotransmitters, is capable of affecting them. The neurotransmitter GABA is present around the central canal and is known to affect cells within other postnatal neurogenic niches. This study used whole cell patch clamp electrophysiology and intracellular dye-loading in in vitro Wistar rat spinal cord slices to characterise ependymal cells and their ability to respond to GABA. Ependymal cells were defined by their passive response properties and low input resistances. Extensive dye-coupling was observed between ependymal cells; this was confirmed as gap junction coupling using the gap junction blocker, 18β-glycyrrhetinic acid, which significantly increased the input resistance of ependymal cells. GABA depolarised all ependymal cells tested; the partial antagonism of this response by bicuculline and gabazine indicates that GABAA receptors contribute to this response. A lack of effect by baclofen suggests that GABAB receptors do not contribute to the GABAergic response. The ability of ependymal cells to respond to GABA suggests that GABA could be capable of influencing the proliferation and differentiation of cells within the neurogenic niche of the postnatal spinal cord.
Collapse
Affiliation(s)
- Laura F Corns
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | | |
Collapse
|