1
|
Fidler Y, Gomes JR. Effects of a Single Dose of X-Ray Irradiation on MMP-9 Expression and Morphology of the Cerebellum Cortex of Adult Rats. CEREBELLUM (LONDON, ENGLAND) 2023; 22:240-248. [PMID: 35262839 DOI: 10.1007/s12311-022-01386-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Although radiation is a strategy widely used to inhibit cancer progression, which includes those of the neck and head, there are still few experimental reports on radiation effects in the cerebellum, particularly on the morphology of its cortex layers and on the Matrix metalloproteinases' (MMPs') expression, which, recently, seems to be involved in the progression of some mental disorders. Therefore, in the present study, we evaluated the morphology of the cerebellum close to the expression of MMP-9 from 4 up to 60 days after a 15-Gy X-ray single dose of X-ray irradiation had been applied to the heads of healthy adult male rats. The cerebellum of the control and irradiated groups was submitted for an analysis of cell Purkinje count, nuclear perimeter, and chromatin density using morphometric estimatives obtained from the Feulgen histochemistry reaction. In addition, immunolocalization and estimative for MMP-9 expression were determined in the cerebellar cortex on days 4, 9, 14, 25, and 60 after the irradiation procedure. Results demonstrated that irradiation produced a significant reduction in the total number of Purkinje cells and a reduction in their nuclear perimeter, along with an increase in chromatin condensation and visible nuclear fragmentation, which was also detected in the granular layer. MMP-9 expression was significantly increased on 4, 9, and 14 days, being detected around the Purkinje cells and in parallel fibres at the molecular layer. We conclude that the effects of a single dose of 15-Gy X-ray irradiation in the cerebellum were an increase in MMP-9 expression in the first 2 weeks after irradiation, especially surrounding the Purkinje cells and in the molecular layers, with morphological changes in the Purkinje cell and granular cell layers, suggesting a continuous cell loss throughout the days evaluated after irradiation.
Collapse
Affiliation(s)
- Yasmin Fidler
- Biomedical Science Post Graduate Program and Department of Structural, Genetic and Molecular Biology, University of Ponta Grossa, Avenue Carlos Cavalcanti, 4748 Campus of Uvaranas CEP, Paraná, 84030-900, Brazil
| | - Jose Rosa Gomes
- Biomedical Science Post Graduate Program and Department of Structural, Genetic and Molecular Biology, University of Ponta Grossa, Avenue Carlos Cavalcanti, 4748 Campus of Uvaranas CEP, Paraná, 84030-900, Brazil.
| |
Collapse
|
2
|
Antonelli F, Casciati A, Tanori M, Tanno B, Linares-Vidal MV, Serra N, Bellés M, Pannicelli A, Saran A, Pazzaglia S. Alterations in Morphology and Adult Neurogenesis in the Dentate Gyrus of Patched1 Heterozygous Mice. Front Mol Neurosci 2018; 11:168. [PMID: 29875630 PMCID: PMC5974030 DOI: 10.3389/fnmol.2018.00168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023] Open
Abstract
Many genes controlling neuronal development also regulate adult neurogenesis. We investigated in vivo the effect of Sonic hedgehog (Shh) signaling activation on patterning and neurogenesis of the hippocampus and behavior of Patched1 (Ptch1) heterozygous mice (Ptch1+/−). We demonstrated for the first time, that Ptch1+/− mice exhibit morphological, cellular and molecular alterations in the dentate gyrus (DG), including elongation and reduced width of the DG as well as deregulations at multiple steps during lineage progression from neural stem cells to neurons. By using stage-specific cellular markers, we detected reduction of quiescent stem cells, newborn neurons and astrocytes and accumulation of proliferating intermediate progenitors, indicative of defects in the dynamic transition among neural stages. Phenotypic alterations in Ptch1+/− mice were accompanied by expression changes in Notch pathway downstream components and TLX nuclear receptor, as well as perturbations in inflammatory and synaptic networks and mouse behavior, pointing to complex biological interactions and highlighting cooperation between Shh and Notch signaling in the regulation of neurogenesis.
Collapse
Affiliation(s)
- Francesca Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Arianna Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Mirella Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Maria V Linares-Vidal
- Laboratory of Toxicology and Environmental Health, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira I Virgili University (URV), Reus, Spain.,Physiology Unit, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Noemi Serra
- Laboratory of Toxicology and Environmental Health, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira I Virgili University (URV), Reus, Spain.,Physiology Unit, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Monserrat Bellés
- Laboratory of Toxicology and Environmental Health, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira I Virgili University (URV), Reus, Spain.,Physiology Unit, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Alessandro Pannicelli
- Technical Unit of Energetic Efficiency, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
3
|
Averbeck D, Salomaa S, Bouffler S, Ottolenghi A, Smyth V, Sabatier L. Progress in low dose health risk research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:46-69. [DOI: 10.1016/j.mrrev.2018.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
|
4
|
Tanno B, Babini G, Leonardi S, Giardullo P, De Stefano I, Pasquali E, Ottolenghi A, Atkinson MJ, Saran A, Mancuso M. Ex vivo miRNome analysis in Ptch1+/- cerebellum granule cells reveals a subset of miRNAs involved in radiation-induced medulloblastoma. Oncotarget 2018; 7:68253-68269. [PMID: 27626168 PMCID: PMC5356552 DOI: 10.18632/oncotarget.11938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
It has historically been accepted that incorrectly repaired DNA double strand breaks (DSBs) are the principal lesions of importance regarding mutagenesis, and long-term biological effects associated with ionizing radiation. However, radiation may also cause dysregulation of epigenetic processes that can lead to altered gene function and malignant transformation, and epigenetic alterations are important causes of miRNAs dysregulation in cancer. Patched1 heterozygous (Ptch1+/−) mice, characterized by aberrant activation of the Sonic hedgehog (Shh) signaling pathway, are a well-known murine model of spontaneous and radiation-induced medulloblastoma (MB), a common pediatric brain tumor originating from neural granule cell progenitors (GCPs). The high sensitivity of neonatal Ptch1+/− mice to radiogenic MB is dependent on deregulation of the Ptch1 gene function. Ptch1 activates a growth and differentiation programme that is a strong candidate for regulation through the non-coding genome. Therefore we carried out miRNA next generation sequencing in ex vivo irradiated and control GCPs, isolated and purified from cerebella of neonatal WT and Ptch1+/− mice. We identified a subset of miRNAs, namely let-7 family and miR-17∼92 cluster members, whose expression is altered in GCPs by radiation alone, or by synergistic interaction of radiation with Shh-deregulation. The same miRNAs were further validated in spontaneous and radiation-induced MBs from Ptch1+/− mice, confirming persistent deregulation of these miRNAs in the pathogenesis of MB. Our results support the hypothesis that miRNAs dysregulation is associated with radiosensitivity of GCPs and their neoplastic transformation in vivo.
Collapse
Affiliation(s)
- Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | | | - Simona Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Paola Giardullo
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy.,Department of Sciences, Roma Tre University, Rome, Italy
| | - Ilaria De Stefano
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy
| | - Emanuela Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | | | - Michael J Atkinson
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
5
|
Kempf SJ, Janik D, Barjaktarovic Z, Braga-Tanaka I, Tanaka S, Neff F, Saran A, Larsen MR, Tapio S. Chronic low-dose-rate ionising radiation affects the hippocampal phosphoproteome in the ApoE-/- Alzheimer's mouse model. Oncotarget 2018; 7:71817-71832. [PMID: 27708245 PMCID: PMC5342125 DOI: 10.18632/oncotarget.12376] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022] Open
Abstract
Accruing data indicate that radiation-induced consequences resemble pathologies of neurodegenerative diseases such as Alzheimer´s. The aim of this study was to elucidate the effect on hippocampus of chronic low-dose-rate radiation exposure (1 mGy/day or 20 mGy/day) given over 300 days with cumulative doses of 0.3 Gy and 6.0 Gy, respectively. ApoE deficient mutant C57Bl/6 mouse was used as an Alzheimer´s model. Using mass spectrometry, a marked alteration in the phosphoproteome was found at both dose rates. The radiation-induced changes in the phosphoproteome were associated with the control of synaptic plasticity, calcium-dependent signalling and brain metabolism. An inhibition of CREB signalling was found at both dose rates whereas Rac1-Cofilin signalling was found activated only at the lower dose rate. Similarly, the reduction in the number of activated microglia in the molecular layer of hippocampus that paralleled with reduced levels of TNFα expression and lipid peroxidation was significant only at the lower dose rate. Adult neurogenesis, investigated by Ki67, GFAP and NeuN staining, and cell death (activated caspase-3) were not influenced at any dose or dose rate. This study shows that several molecular targets induced by chronic low-dose-rate radiation overlap with those of Alzheimer´s pathology. It may suggest that ionising radiation functions as a contributing risk factor to this neurodegenerative disease.
Collapse
Affiliation(s)
- Stefan J Kempf
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Dirk Janik
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Zarko Barjaktarovic
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | | | | | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l´Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
6
|
Tanori M, Casciati A, Berardinelli F, Leonardi S, Pasquali E, Antonelli F, Tanno B, Giardullo P, Pannicelli A, Babini G, De Stefano I, Sgura A, Mancuso M, Saran A, Pazzaglia S. Synthetic lethal genetic interactions between Rad54 and PARP-1 in mouse development and oncogenesis. Oncotarget 2017; 8:100958-100974. [PMID: 29254138 PMCID: PMC5731848 DOI: 10.18632/oncotarget.10479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/26/2016] [Indexed: 12/27/2022] Open
Abstract
Mutations in DNA repair pathways are frequent in human cancers. Hence, gaining insights into the interaction of DNA repair genes is key to development of novel tumor-specific treatment strategies. In this study, we tested the functional relationship in development and oncogenesis between the homologous recombination (HR) factor Rad54 and Parp-1, a nuclear enzyme that plays a multifunctional role in DNA damage signaling and repair. We introduced single or combined Rad54 and Parp-1 inactivating germline mutations in Ptc1 heterozygous mice, a well-characterized model of medulloblastoma, the most common malignant pediatric brain tumor. Our study reveals that combined inactivation of Rad54 and Parp-1 causes a marked growth delay culminating in perinatallethality, providing for the first time evidence of synthetic lethal interactions between Rad54 and Parp-1 in vivo. Although the double mutation hampered investigation of Rad54 and Parp-1 interactions in cerebellum tumorigenesis, insights were gained by showing accumulation of endogenous DNA damage and increased apoptotic rate in granule cell precursors (GCPs). A network-based approach to detect differential expression of DNA repair genes in the cerebellum revealed perturbation of p53 signaling in Rad54-/-/Parp-1-/-/Ptc1+/-, and MEFs from combined Rad54/Parp-1 mutants showed p53/p21-dependent typical senescent features. These findings help elucidate the genetic interplay between Rad54 and Parp-1 by suggesting that p53/p21-mediated apoptosis and/or senescence may be involved in synthetic lethal interactions occurring during development and inhibition of tumor growth.
Collapse
Affiliation(s)
- Mirella Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Arianna Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | | | - Simona Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Emanuela Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Francesca Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Paola Giardullo
- Department of Science, University Roma Tre, Rome, Italy
- Department of Radiation Physics, Università degli Studi Guglielmo Marconi, Rome, Italy
| | | | | | - Ilaria De Stefano
- Department of Radiation Physics, Università degli Studi Guglielmo Marconi, Rome, Italy
| | | | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| |
Collapse
|
7
|
Revenco T, Lapouge G, Moers V, Brohée S, Sotiropoulou PA. Low Dose Radiation Causes Skin Cancer in Mice and Has a Differential Effect on Distinct Epidermal Stem Cells. Stem Cells 2017; 35:1355-1364. [PMID: 28100039 DOI: 10.1002/stem.2571] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/02/2017] [Indexed: 12/22/2022]
Abstract
The carcinogenic effect of ionizing radiation has been evaluated based on limited populations accidently exposed to high dose radiation. In contrast, insufficient data are available on the effect of low dose radiation (LDR), such as radiation deriving from medical investigations and interventions, as well as occupational exposure that concern a large fraction of western populations. Using mouse skin epidermis as a model, we showed that LDR results in DNA damage in sebaceous gland (SG) and bulge epidermal stem cells (SCs). While the first commit apoptosis upon low dose irradiation, the latter survive. Bulge SC survival coincides with higher HIF-1α expression and a metabolic switch upon LDR. Knocking down HIF-1α sensitizes bulge SCs to LDR-induced apoptosis, while upregulation of HIF-1α in the epidermis, including SG SCs, rescues cell death. Most importantly, we show that LDR results in cancer formation with full penetrance in the radiation-sensitive Patched1 heterozygous mice. Overall, our results demonstrate for the first time that LDR can be a potent carcinogen in individuals predisposed to cancer. Stem Cells 2017;35:1355-1364.
Collapse
Affiliation(s)
| | - Gaelle Lapouge
- IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
| | - Virginie Moers
- IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
| | - Sylvain Brohée
- IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
8
|
Kempf SJ, Sepe S, von Toerne C, Janik D, Neff F, Hauck SM, Atkinson MJ, Mastroberardino PG, Tapio S. Neonatal Irradiation Leads to Persistent Proteome Alterations Involved in Synaptic Plasticity in the Mouse Hippocampus and Cortex. J Proteome Res 2015; 14:4674-86. [PMID: 26420666 DOI: 10.1021/acs.jproteome.5b00564] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent epidemiological data indicate that radiation doses as low as those used in computer tomography may result in long-term neurocognitive side effects. The aim of this study was to elucidate long-term molecular alterations related to memory formation in the brain after low and moderate doses of γ radiation. Female C57BL/6J mice were irradiated on postnatal day 10 with total body doses of 0.1, 0.5, or 2.0 Gy; the control group was sham-irradiated. The proteome analysis of hippocampus, cortex, and synaptosomes isolated from these brain regions indicated changes in ephrin-related, RhoGDI, and axonal guidance signaling. Immunoblotting and miRNA-quantification demonstrated an imbalance in the synapse morphology-related Rac1-Cofilin pathway and long-term potentiation-related cAMP response element-binding protein (CREB) signaling. Proteome profiling also showed impaired oxidative phosphorylation, especially in the synaptic mitochondria. This was accompanied by an early (4 weeks) reduction of mitochondrial respiration capacity in the hippocampus. Although the respiratory capacity was restored by 24 weeks, the number of deregulated mitochondrial complex proteins was increased at this time. All observed changes were significant at doses of 0.5 and 2.0 Gy but not at 0.1 Gy. This study strongly suggests that ionizing radiation at the neonatal state triggers persistent proteomic alterations associated with synaptic impairment.
Collapse
Affiliation(s)
| | - Sara Sepe
- Department of Genetics, Erasmus Medical Center , 3015 CE Rotterdam, The Netherlands
| | | | | | | | | | - Michael J Atkinson
- Chair of Radiation Biology, Technical University Munich , 80333 Munich, Germany
| | | | | |
Collapse
|
9
|
Immunocytochemical localization of DNA double-strand breaks in human and rat brains. Neuroscience 2015; 290:196-203. [PMID: 25637486 DOI: 10.1016/j.neuroscience.2015.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/15/2014] [Accepted: 01/15/2015] [Indexed: 11/22/2022]
Abstract
Post-mitotic neurons are particularly susceptible to DNA double-strand breaks during their relatively long lifespan. Here, we report the anatomical distribution and subcellular localization of a molecule first identified as a DNA damage checkpoint protein. Immunocytochemical analysis of 53BP1 showed that this nuclear molecule is widely expressed in adult human and rat brains. Further, we showed that 53BP1 routinely co-clusters with γ-aminobutyric acid neurons throughout the rat neuraxis. Notably, 53BP1 is only expressed in neuronal cells as the DNA damage checkpoint protein was virtually absent from glial cells. Finally, we found that human neural progenitors showed a differential index of DNA fragmentation at different stages of cellular differentiation. These data provide additional and important anatomical findings for the distribution and phenotype of DNA double-strand breaks in the mammalian brain, and suggest that DNA fragmentation is a spontaneous event routinely occurring in neural progenitors and adult neurons.
Collapse
|
10
|
Zhang L, Li H, Zeng S, Chen L, Fang Z, Huang Q. Long-term tracing of the BrdU label-retaining cells in adult rat brain. Neurosci Lett 2015; 591:30-34. [PMID: 25681624 DOI: 10.1016/j.neulet.2015.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/17/2015] [Accepted: 02/10/2015] [Indexed: 02/05/2023]
Abstract
Stem cells have been shown to be label-retaining, slow-cycling cells. In the adult mammalian central nervous system, the distribution of the stem cells is inconsistent among previous studies. The purpose of the present study was to determine the distribution of BrdU-LRCs and the cell types of the BrdU-LRCs in rat brain. To label BrdU-LRCs in rat brain, six newborn rats were administered intraperitoneal injections of BrdU 50mg/kg/time twice a day at 2h intervals, over four consecutive days. The BrdU-LRCs were detected by immunohistochemistry, the cell types were examined by double immunofluorescence staining for BrdU/GFAP and BrdU/MAP2, and the percentage of BrdU-LRCs was calculated following a chase period of 24 weeks post-injection. We observed that BrdU-LRCs distributed extensively in rat brain. In the LV, DG, striatum, cerebellum and neocortex, the percentage of BrdU-LRCs was 11.3 ± 2.5%, 10.9 ± 1.3%, 6.4 ± 1.2%, 5.6 ± 0.8%, and 4.9 ± 0.6%, respectively. The highest density of BrdU-LRCs was in LV and DG, the known stem cell sites in adult mammalian brain. Both BrdU/GFAP and BrdU/MAP2 double-staining cells could be detected in the above five brain subregions. Ongoing cell production was widespread in the adult mammalian brain, which would allow us to reevaluate the capacity and potentiality of the brain in homeostasis, wound repair, and regeneration.
Collapse
Affiliation(s)
- Lei Zhang
- Psychiatric and Psychological Department, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, Guangdong Province 515041, China; Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou, Guangdong Province 515065, China
| | - Haihong Li
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, Guangdong Province 515041, China.
| | - Shaopeng Zeng
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, Guangdong Province 515041, China
| | - Lu Chen
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, Guangdong Province 515041, China
| | - Zeman Fang
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou, Guangdong Province 515065, China
| | - Qingjun Huang
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou, Guangdong Province 515065, China
| |
Collapse
|
11
|
Kempf SJ, Casciati A, Buratovic S, Janik D, von Toerne C, Ueffing M, Neff F, Moertl S, Stenerlöw B, Saran A, Atkinson MJ, Eriksson P, Pazzaglia S, Tapio S. The cognitive defects of neonatally irradiated mice are accompanied by changed synaptic plasticity, adult neurogenesis and neuroinflammation. Mol Neurodegener 2014; 9:57. [PMID: 25515237 PMCID: PMC4280038 DOI: 10.1186/1750-1326-9-57] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023] Open
Abstract
Background/purpose of the study Epidemiological evidence suggests that low doses of ionising radiation (≤1.0 Gy) produce persistent alterations in cognition if the exposure occurs at a young age. The mechanisms underlying such alterations are unknown. We investigated the long-term effects of low doses of total body gamma radiation on neonatally exposed NMRI mice on the molecular and cellular level to elucidate neurodegeneration. Results Significant alterations in spontaneous behaviour were observed at 2 and 4 months following a single 0.5 or 1.0 Gy exposure. Alterations in the brain proteome, transcriptome, and several miRNAs were analysed 6–7 months post-irradiation in the hippocampus, dentate gyrus (DG) and cortex. Signalling pathways related to synaptic actin remodelling such as the Rac1-Cofilin pathway were altered in the cortex and hippocampus. Further, synaptic proteins MAP-2 and PSD-95 were increased in the DG and hippocampus (1.0 Gy). The expression of synaptic plasticity genes Arc, c-Fos and CREB was persistently reduced at 1.0 Gy in the hippocampus and cortex. These changes were coupled to epigenetic modulation via increased levels of microRNAs (miR-132/miR-212, miR-134). Astrogliosis, activation of insulin-growth factor/insulin signalling and increased level of microglial cytokine TNFα indicated radiation-induced neuroinflammation. In addition, adult neurogenesis within the DG was persistently negatively affected after irradiation, particularly at 1.0 Gy. Conclusion These data suggest that neurocognitive disorders may be induced in adults when exposed at a young age to low and moderate cranial doses of radiation. This raises concerns about radiation safety standards and regulatory practices. Electronic supplementary material The online version of this article (doi:10.1186/1750-1326-9-57) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| |
Collapse
|
12
|
Pacini N, Borziani F. Cancer stem cell theory and the warburg effect, two sides of the same coin? Int J Mol Sci 2014; 15:8893-930. [PMID: 24857919 PMCID: PMC4057766 DOI: 10.3390/ijms15058893] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/28/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022] Open
Abstract
Over the last 100 years, many studies have been performed to determine the biochemical and histopathological phenomena that mark the origin of neoplasms. At the end of the last century, the leading paradigm, which is currently well rooted, considered the origin of neoplasms to be a set of genetic and/or epigenetic mutations, stochastic and independent in a single cell, or rather, a stochastic monoclonal pattern. However, in the last 20 years, two important areas of research have underlined numerous limitations and incongruities of this pattern, the hypothesis of the so-called cancer stem cell theory and a revaluation of several alterations in metabolic networks that are typical of the neoplastic cell, the so-called Warburg effect. Even if this specific “metabolic sign” has been known for more than 85 years, only in the last few years has it been given more attention; therefore, the so-called Warburg hypothesis has been used in multiple and independent surveys. Based on an accurate analysis of a series of considerations and of biophysical thermodynamic events in the literature, we will demonstrate a homogeneous pattern of the cancer stem cell theory, of the Warburg hypothesis and of the stochastic monoclonal pattern; this pattern could contribute considerably as the first basis of the development of a new uniform theory on the origin of neoplasms. Thus, a new possible epistemological paradigm is represented; this paradigm considers the Warburg effect as a specific “metabolic sign” reflecting the stem origin of the neoplastic cell, where, in this specific metabolic order, an essential reason for the genetic instability that is intrinsic to the neoplastic cell is defined.
Collapse
Affiliation(s)
- Nicola Pacini
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| | - Fabio Borziani
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| |
Collapse
|
13
|
Pao GM, Zhu Q, Perez-Garcia CG, Chou SJ, Suh H, Gage FH, O’Leary DDM, Verma IM. Role of BRCA1 in brain development. Proc Natl Acad Sci U S A 2014; 111:E1240-8. [PMID: 24639535 PMCID: PMC3977248 DOI: 10.1073/pnas.1400783111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) is a breast and ovarian cancer tumor suppressor whose loss leads to DNA damage and defective centrosome functions. Despite its tumor suppression functions, BRCA1 is most highly expressed in the embryonic neuroepithelium when the neural progenitors are highly proliferative. To determine its functional significance, we deleted BRCA1 in the developing brain using a neural progenitor-specific driver. The phenotype is characterized by severe agenesis of multiple laminated cerebral structures affecting most notably the neocortex, hippocampus, cerebellum, and olfactory bulbs. Major phenotypes are caused by excess apoptosis, as these could be significantly suppressed by the concomitant deletion of p53. Certain phenotypes attributable to centrosomal and cell polarity functions could not be rescued by p53 deletion. A double KO with the DNA damage sensor kinase ATM was able to rescue BRCA1 loss to a greater extent than p53. Our results suggest distinct apoptotic and centrosomal functions of BRCA1 in neural progenitors, with important implications to understand the sensitivity of the embryonic brain to DNA damage, as well as the developmental regulation of brain size.
Collapse
Affiliation(s)
| | | | - Carlos G. Perez-Garcia
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Shen-Ju Chou
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | | | | | - Dennis D. M. O’Leary
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | | |
Collapse
|
14
|
Manda K, Kavanagh JN, Buttler D, Prise KM, Hildebrandt G. Low dose effects of ionizing radiation on normal tissue stem cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 761:6-14. [PMID: 24566131 DOI: 10.1016/j.mrrev.2014.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/03/2014] [Accepted: 02/13/2014] [Indexed: 12/18/2022]
Abstract
In recent years, there has been growing evidence for the involvement of stem cells in cancer initiation. As a result of their long life span, stem cells may have an increased propensity to accumulate genetic damage relative to differentiated cells. Therefore, stem cells of normal tissues may be important targets for radiation-induced carcinogenesis. Knowledge of the effects of ionizing radiation (IR) on normal stem cells and on the processes involved in carcinogenesis is very limited. The influence of high doses of IR (>5Gy) on proliferation, cell cycle and induction of senescence has been demonstrated in stem cells. There have been limited studies of the effects of moderate (0.5-5Gy) and low doses (<0.5Gy) of IR on stem cells however, the effect of low dose IR (LD-IR) on normal stem cells as possible targets for radiation-induced carcinogenesis has not been studied in any depth. There may also be important parallels between stem cell responses and those of cancer stem cells, which may highlight potential key common mechanisms of their response and radiosensitivity. This review will provide an overview of the current knowledge of radiation-induced effects on normal stem cells, with particular focus on low and moderate doses of IR.
Collapse
Affiliation(s)
- Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Joy N Kavanagh
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Dajana Buttler
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock, Germany.
| |
Collapse
|