1
|
Barravecchia I, De Cesari C, Guadagni V, Signore G, Bertolini E, Giannelli SG, Scebba F, Martini D, Pè ME, Broccoli V, Andreazzoli M, Angeloni D, Demontis GC. Increasing cell culture density during a developmental window prevents fated rod precursors derailment toward hybrid rod-glia cells. Sci Rep 2023; 13:6025. [PMID: 37055439 PMCID: PMC10101963 DOI: 10.1038/s41598-023-32571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
In proliferating multipotent retinal progenitors, transcription factors dynamics set the fate of postmitotic daughter cells, but postmitotic cell fate plasticity driven by extrinsic factors remains controversial. Transcriptome analysis reveals the concurrent expression by postmitotic rod precursors of genes critical for the Müller glia cell fate, which are rarely generated from terminally-dividing progenitors as a pair with rod precursors. By combining gene expression and functional characterisation in single cultured rod precursors, we identified a time-restricted window where increasing cell culture density switches off the expression of genes critical for Müller glial cells. Intriguingly, rod precursors in low cell culture density maintain the expression of genes of rod and glial cell fate and develop a mixed rod/Muller glial cells electrophysiological fingerprint, revealing rods derailment toward a hybrid rod-glial phenotype. The notion of cell culture density as an extrinsic factor critical for preventing rod-fated cells diversion toward a hybrid cell state may explain the occurrence of hybrid rod/MG cells in the adult retina and provide a strategy to improve engraftment yield in regenerative approaches to retinal degenerative disease by stabilising the fate of grafted rod precursors.
Collapse
Affiliation(s)
- Ivana Barravecchia
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy
- Scuola Superiore Sant'Anna, Pisa, Italy
| | - Chiara De Cesari
- Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Giovanni Signore
- Department of Biology, University of Pisa, Pisa, Italy
- Fondazione Pisana per la Scienza, San Giuliano Terme, Italy
| | - Edoardo Bertolini
- Scuola Superiore Sant'Anna, Pisa, Italy
- Donald Danforth Plant Science Center, St. Louis, USA
| | | | | | | | | | - Vania Broccoli
- San Raffaele Hospital, Milan, Italy
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | | | | | - Gian Carlo Demontis
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy.
| |
Collapse
|
2
|
Sladen PE, Jovanovic K, Guarascio R, Ottaviani D, Salsbury G, Novoselova T, Chapple JP, Yu-Wai-Man P, Cheetham ME. Modelling autosomal dominant optic atrophy associated with OPA1 variants in iPSC-derived retinal ganglion cells. Hum Mol Genet 2022; 31:3478-3493. [PMID: 35652445 PMCID: PMC9558835 DOI: 10.1093/hmg/ddac128] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/14/2022] Open
Abstract
Autosomal dominant optic atrophy (DOA) is the most common inherited optic neuropathy, characterized by the preferential loss of retinal ganglion cells (RGCs), resulting in optic nerve degeneration and progressive bilateral central vision loss. More than 60% of genetically confirmed patients with DOA carry variants in the nuclear OPA1 gene, which encodes for a ubiquitously expressed, mitochondrial GTPase protein. OPA1 has diverse functions within the mitochondrial network, facilitating inner membrane fusion and cristae modelling, regulating mitochondrial DNA maintenance and coordinating mitochondrial bioenergetics. There are currently no licensed disease-modifying therapies for DOA and the disease mechanisms driving RGC degeneration are poorly understood. Here, we describe the generation of isogenic, heterozygous OPA1 null induced pluripotent stem cell (iPSC) (OPA1+/-) through clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing of a control cell line, in conjunction with the generation of DOA patient-derived iPSC carrying OPA1 variants, namely, the c.2708_2711delTTAG variant (DOA iPSC), and previously reported missense variant iPSC line (c.1334G>A, DOA plus [DOA]+ iPSC) and CRISPR/Cas9 corrected controls. A two-dimensional (2D) differentiation protocol was used to study the effect of OPA1 variants on iPSC-RGC differentiation and mitochondrial function. OPA1+/-, DOA and DOA+ iPSC showed no differentiation deficit compared to control iPSC lines, exhibiting comparable expression of all relevant markers at each stage of differentiation. OPA1+/- and OPA1 variant iPSC-RGCs exhibited impaired mitochondrial homeostasis, with reduced bioenergetic output and compromised mitochondrial DNA maintenance. These data highlight mitochondrial deficits associated with OPA1 dysfunction in human iPSC-RGCs, and establish a platform to study disease mechanisms that contribute to RGC loss in DOA, as well as potential therapeutic interventions.
Collapse
Affiliation(s)
- Paul E Sladen
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | - Daniele Ottaviani
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
- Department of Biology, University of Padua, and Veneto Institute of Molecular Medicine, Padua 35129, Italy
| | - Grace Salsbury
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Tatiana Novoselova
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Patrick Yu-Wai-Man
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospital, Cambridge CB2 0QQ, UK
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | | |
Collapse
|
3
|
Andreazzoli M, Barravecchia I, De Cesari C, Angeloni D, Demontis GC. Inducible Pluripotent Stem Cells to Model and Treat Inherited Degenerative Diseases of the Outer Retina: 3D-Organoids Limitations and Bioengineering Solutions. Cells 2021; 10:cells10092489. [PMID: 34572137 PMCID: PMC8471616 DOI: 10.3390/cells10092489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degenerations (IRD) affecting either photoreceptors or pigment epithelial cells cause progressive visual loss and severe disability, up to complete blindness. Retinal organoids (ROs) technologies opened up the development of human inducible pluripotent stem cells (hiPSC) for disease modeling and replacement therapies. However, hiPSC-derived ROs applications to IRD presently display limited maturation and functionality, with most photoreceptors lacking well-developed outer segments (OS) and light responsiveness comparable to their adult retinal counterparts. In this review, we address for the first time the microenvironment where OS mature, i.e., the subretinal space (SRS), and discuss SRS role in photoreceptors metabolic reprogramming required for OS generation. We also address bioengineering issues to improve culture systems proficiency to promote OS maturation in hiPSC-derived ROs. This issue is crucial, as satisfying the demanding metabolic needs of photoreceptors may unleash hiPSC-derived ROs full potential for disease modeling, drug development, and replacement therapies.
Collapse
Affiliation(s)
| | - Ivana Barravecchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy;
| | | | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy;
| | - Gian Carlo Demontis
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Correspondence: (M.A.); (G.C.D.)
| |
Collapse
|
4
|
Zhao C, Wang Q, Temple S. Stem cell therapies for retinal diseases: recapitulating development to replace degenerated cells. Development 2017; 144:1368-1381. [PMID: 28400433 PMCID: PMC5399657 DOI: 10.1242/dev.133108] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retinal degenerative diseases are the leading causes of blindness worldwide. Replacing lost retinal cells via stem cell-based therapies is an exciting, rapidly advancing area of translational research that has already entered the clinic. Here, we review the status of these clinical efforts for several significant retinal diseases, describe the challenges involved and discuss how basic developmental studies have contributed to and are needed to advance clinical goals.
Collapse
Affiliation(s)
- Cuiping Zhao
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Qingjie Wang
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Sally Temple
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| |
Collapse
|
5
|
Motahari Z, Martinez-De Luna RI, Viczian AS, Zuber ME. Tbx3 represses bmp4 expression and, with Pax6, is required and sufficient for retina formation. Development 2016; 143:3560-3572. [PMID: 27578778 DOI: 10.1242/dev.130955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 08/05/2016] [Indexed: 12/30/2022]
Abstract
Vertebrate eye formation begins in the anterior neural plate in the eye field. Seven eye field transcription factors (EFTFs) are expressed in eye field cells and when expressed together are sufficient to generate retina from pluripotent cells. The EFTF Tbx3 can regulate the expression of some EFTFs; however, its role in retina formation is unknown. Here, we show that Tbx3 represses bmp4 transcription and is required in the eye field for both neural induction and normal eye formation in Xenopus laevis Although sufficient for neural induction, Tbx3-expressing pluripotent cells only form retina in the context of the eye field. Unlike Tbx3, the neural inducer Noggin can generate retina both within and outside the eye field. We found that the neural and retina-inducing activity of Noggin requires Tbx3. Noggin, but not Tbx3, induces Pax6 and coexpression of Tbx3 and Pax6 is sufficient to determine pluripotent cells to a retinal lineage. Our results suggest that Tbx3 represses bmp4 expression and maintains eye field neural progenitors in a multipotent state; then, in combination with Pax6, Tbx3 causes eye field cells to form retina.
Collapse
Affiliation(s)
- Zahra Motahari
- The Center for Vision Research, Department of Ophthalmology, Upstate Medical University, Syracuse, NY 13210, USA Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Reyna I Martinez-De Luna
- The Center for Vision Research, Department of Ophthalmology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Andrea S Viczian
- The Center for Vision Research, Department of Ophthalmology, Upstate Medical University, Syracuse, NY 13210, USA Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210, USA Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael E Zuber
- The Center for Vision Research, Department of Ophthalmology, Upstate Medical University, Syracuse, NY 13210, USA Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210, USA Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
6
|
Chamling X, Sluch VM, Zack DJ. The Potential of Human Stem Cells for the Study and Treatment of Glaucoma. Invest Ophthalmol Vis Sci 2016; 57:ORSFi1-6. [PMID: 27116666 PMCID: PMC5110236 DOI: 10.1167/iovs.15-18590] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/05/2016] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Currently, the only available and approved treatments for glaucoma are various pharmacologic, laser-based, and surgical procedures that lower IOP. Although these treatments can be effective, they are not always sufficient, and they cannot restore vision that has already been lost. The goal of this review is to briefly assess current developments in the application of stem cell biology to the study and treatment of glaucoma and other forms of optic neuropathy. METHODS A combined literature review and summary of the glaucoma-related discussion at the 2015 "Sight Restoration Through Stem Cell Therapy" meeting that was sponsored by the Ocular Research Symposia Foundation (ORSF). RESULTS Ongoing advancements in basic and eye-related developmental biology have enabled researchers to direct murine and human stem cells along specific developmental paths and to differentiate them into a variety of ocular cell types of interest. The most advanced of these efforts involve the differentiation of stem cells into retinal pigment epithelial cells, work that has led to the initiation of several human trials. More related to the glaucoma field, there have been recent advances in developing protocols for differentiation of stem cells into trabecular meshwork and retinal ganglion cells. Additionally, efforts are being made to generate stem cell-derived cells that can be used to secrete neuroprotective factors. CONCLUSIONS Advancing stem cell technology provides opportunities to improve our understanding of glaucoma-related biology and develop models for drug development, and offers the possibility of cell-based therapies to restore sight to patients who have already lost vision.
Collapse
Affiliation(s)
- Xitiz Chamling
- Department of Ophthalmology Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Valentin M. Sluch
- Department of Ophthalmology Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Donald J. Zack
- Department of Ophthalmology Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
7
|
Chen J, Riazifar H, Guan MX, Huang T. Modeling autosomal dominant optic atrophy using induced pluripotent stem cells and identifying potential therapeutic targets. Stem Cell Res Ther 2016; 7:2. [PMID: 26738566 PMCID: PMC4704249 DOI: 10.1186/s13287-015-0264-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Background Many retinal degenerative diseases are caused by the loss of retinal ganglion cells (RGCs). Autosomal dominant optic atrophy is the most common hereditary optic atrophy disease and is characterized by central vision loss and degeneration of RGCs. Currently, there is no effective treatment for this group of diseases. However, stem cell therapy holds great potential for replacing lost RGCs of patients. Compared with embryonic stem cells, induced pluripotent stem cells (iPSCs) can be derived from adult somatic cells, and they are associated with fewer ethical concerns and are less prone to immune rejection. In addition, patient-derived iPSCs may provide us with a cellular model for studying the pathogenesis and potential therapeutic agents for optic atrophy. Methods In this study, iPSCs were obtained from patients carrying an OPA1 mutation (OPA1+/−-iPSC) that were diagnosed with optic atrophy. These iPSCs were differentiated into putative RGCs, which were subsequently characterized by using RGC-specific expression markers BRN3a and ISLET-1. Results Mutant OPA1+/−-iPSCs exhibited significantly more apoptosis and were unable to efficiently differentiate into RGCs. However, with the addition of neural induction medium, Noggin, or estrogen, OPA1+/−-iPSC differentiation into RGCs was promoted. Conclusions Our results suggest that apoptosis mediated by OPA1 mutations plays an important role in the pathogenesis of optic atrophy, and both noggin and β-estrogen may represent potential therapeutic agents for OPA1-related optic atrophy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0264-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Chen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Hamidreza Riazifar
- Department of Pediatrics, Division of Human Genetics, University of California, Irvine, CA, 92697, USA.
| | - Min-Xin Guan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
8
|
Bertacchi M, Lupo G, Pandolfini L, Casarosa S, D'Onofrio M, Pedersen RA, Harris WA, Cremisi F. Activin/Nodal Signaling Supports Retinal Progenitor Specification in a Narrow Time Window during Pluripotent Stem Cell Neuralization. Stem Cell Reports 2015; 5:532-45. [PMID: 26388287 PMCID: PMC4624997 DOI: 10.1016/j.stemcr.2015.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 01/02/2023] Open
Abstract
Retinal progenitors are initially found in the anterior neural plate region known as the eye field, whereas neighboring areas undertake telencephalic or hypothalamic development. Eye field cells become specified by switching on a network of eye field transcription factors, but the extracellular cues activating this network remain unclear. In this study, we used chemically defined media to induce in vitro differentiation of mouse embryonic stem cells (ESCs) toward eye field fates. Inhibition of Wnt/β-catenin signaling was sufficient to drive ESCs to telencephalic, but not retinal, fates. Instead, retinal progenitors could be generated from competent differentiating mouse ESCs by activation of Activin/Nodal signaling within a narrow temporal window corresponding to the emergence of primitive anterior neural progenitors. Activin also promoted eye field gene expression in differentiating human ESCs. Our results reveal insights into the mechanisms of eye field specification and open new avenues toward the generation of retinal progenitors for translational medicine.
Collapse
Affiliation(s)
- Michele Bertacchi
- Laboratorio di Biologia, Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56124 Pisa, Italy
| | - Giuseppe Lupo
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Luca Pandolfini
- Laboratorio di Biologia, Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56124 Pisa, Italy
| | - Simona Casarosa
- Centre for Integrative Biology, University of Trento, Via delle Regole 101, 38123 Mattarello (Trento), Italy
| | - Mara D'Onofrio
- Genomics Facility, European Brain Research Institute "Rita Levi-Montalcini," Via del Fosso di Fiorano 64, 00143 Rome, Italy; Istituto di Farmacologia Traslazionale, CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Roger A Pedersen
- Department of Surgery and The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, West Forvie Building, Robinson Way, Cambridge CB2 0SZ, UK
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Federico Cremisi
- Laboratorio di Biologia, Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56124 Pisa, Italy; Institute of Biomedical Technologies (ITB), National Research Council (CNR) of Pisa, Via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
9
|
Messina A, Lan L, Incitti T, Bozza A, Andreazzoli M, Vignali R, Cremisi F, Bozzi Y, Casarosa S. Noggin-Mediated Retinal Induction Reveals a Novel Interplay Between Bone Morphogenetic Protein Inhibition, Transforming Growth Factor β, and Sonic Hedgehog Signaling. Stem Cells 2015; 33:2496-508. [PMID: 25913744 DOI: 10.1002/stem.2043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/12/2015] [Accepted: 04/02/2015] [Indexed: 01/27/2023]
Abstract
It has long been known that the depletion of bone morphogenetic protein (BMP) is one of the key factors necessary for the development of anterior neuroectodermal structures. However, the precise molecular mechanisms that underlie forebrain regionalization are still not completely understood. Here, we show that Noggin1 is involved in the regionalization of anterior neural structures in a dose-dependent manner. Low doses of Noggin1 expand prosencephalic territories, while higher doses specify diencephalic and retinal regions at the expense of telencephalic areas. A similar dose-dependent mechanism determines the ability of Noggin1 to convert pluripotent cells in prosencephalic or diencephalic/retinal precursors, as shown by transplant experiments and molecular analyses. At a molecular level, the strong inhibition of BMP signaling exerted by high doses of Noggin1 reinforces the Nodal/transforming growth factor (TGF)β signaling pathway, leading to activation of Gli1 and Gli2 and subsequent activation of Sonic Hedgehog (SHH) signaling. We propose a new role for Noggin1 in determining specific anterior neural structures by the modulation of TGFβ and SHH signaling.
Collapse
Affiliation(s)
| | - Lei Lan
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | - Yuri Bozzi
- CIBIO, University of Trento, Trento, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| | - Simona Casarosa
- CIBIO, University of Trento, Trento, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| |
Collapse
|
10
|
Wong KA, Trembley M, Abd Wahab S, Viczian AS. Efficient retina formation requires suppression of both Activin and BMP signaling pathways in pluripotent cells. Biol Open 2015; 4:573-83. [PMID: 25750435 PMCID: PMC4400599 DOI: 10.1242/bio.20149977] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Retina formation requires the correct spatiotemporal patterning of key regulatory factors. While it is known that repression of several signaling pathways lead to specification of retinal fates, addition of only Noggin, a known BMP antagonist, can convert pluripotent Xenopus laevis animal cap cells to functional retinal cells. The aim of this study is to determine the intracellular molecular events that occur during this conversion. Surprisingly, blocking BMP signaling alone failed to mimic Noggin treatment. Overexpressing Noggin in pluripotent cells resulted in a concentration-dependent suppression of both Smad1 and Smad2 phosphorylation, which act downstream of BMP and Activin signaling, respectively. This caused a decrease in downstream targets: endothelial marker, xk81, and mesodermal marker, xbra. We treated pluripotent cells with dominant-negative receptors or the chemical inhibitors, dorsomorphin and SB431542, which each target either the BMP or Activin signaling pathway. We determined the effect of these treatments on retina formation using the Animal Cap Transplant (ACT) assay; in which treated pluripotent cells were transplanted into the eye field of host embryos. We found that inhibition of Activin signaling, in the presence of BMP signaling inhibition, promotes efficient retinal specification in Xenopus tissue, mimicking the affect of adding Noggin alone. In whole embryos, we found that the eye field marker, rax, expanded when adding both dominant-negative Smad1 and Smad2, as did treating the cells with both dorsomorphin and SB431542. Future studies could translate these findings to a mammalian culture assay, in order to more efficiently produce retinal cells in culture.
Collapse
Affiliation(s)
- Kimberly A Wong
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA The Center for Vision Research, SUNY Eye Institute, Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael Trembley
- Department of Pharmacology and Physiology, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Syafiq Abd Wahab
- Department of Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | - Andrea S Viczian
- Department of Ophthalmology, SUNY Upstate Medical University, Syracuse, NY 13210, USA Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA The Center for Vision Research, SUNY Eye Institute, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
11
|
Gill KP, Hewitt AW, Davidson KC, Pébay A, Wong RCB. Methods of Retinal Ganglion Cell Differentiation From Pluripotent Stem Cells. Transl Vis Sci Technol 2014. [DOI: 10.1167/tvst.3.4.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Gill KP, Hewitt AW, Davidson KC, Pébay A, Wong RCB. Methods of Retinal Ganglion Cell Differentiation From Pluripotent Stem Cells. Transl Vis Sci Technol 2014; 3:7. [PMID: 25774327 DOI: 10.1167/tvst.3.3.7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/26/2014] [Indexed: 12/22/2022] Open
Abstract
Glaucoma, the worldwide leading cause of irreversible blindness, is characterized by progressive degeneration of the optic nerve and loss of retinal ganglion cells. Research into glaucoma pathogenesis has been hampered by difficulties in isolating and culturing retinal ganglion cells in vitro. However, recent improvements in laboratory techniques have enabled the generation of a variety of mature cell types from pluripotent stem cells, including retinal ganglion cells. Indeed, stem cell-based approaches have the potential to revolutionize the field by providing an unlimited source of cells for replacement therapies and by enabling development of in vitro disease models for drug screening and research. Consequently, research aimed at directing pluripotent stem cells to differentiate into retinal ganglion cells has expanded dramatically during the past decade, resulting in significant advances in technique and efficiency. In this paper, we review the methodology for retinal ganglion cell differentiation from pluripotent stem cells of both mouse and human origin and summarize how these techniques have opened up new avenues for modelling glaucoma. Generation of stem cell-derived retinal ganglion cells will have significant translational values, providing an in vitro platform to study the mechanisms responsible for pathogenesis and for drug screening to improve treatment options, as well as for the development of cell therapies for optic neuropathies such as glaucoma.
Collapse
Affiliation(s)
- Katherine P Gill
- Department of Ophthalmology, University of Melbourne, Melbourne East, VIC, Australia
| | - Alex W Hewitt
- Department of Ophthalmology, University of Melbourne, Melbourne East, VIC, Australia
| | - Kathryn C Davidson
- Department of Ophthalmology, University of Melbourne, Melbourne East, VIC, Australia ; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital Melbourne East, VIC, Australia
| | - Alice Pébay
- Department of Ophthalmology, University of Melbourne, Melbourne East, VIC, Australia ; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital Melbourne East, VIC, Australia
| | - Raymond C B Wong
- Department of Ophthalmology, University of Melbourne, Melbourne East, VIC, Australia ; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital Melbourne East, VIC, Australia
| |
Collapse
|
13
|
Viczian AS, Zuber ME. A simple behavioral assay for testing visual function in Xenopus laevis. J Vis Exp 2014. [PMID: 24962702 DOI: 10.3791/51726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Measurement of the visual function in the tadpoles of the frog, Xenopus laevis, allows screening for blindness in live animals. The optokinetic response is a vision-based, reflexive behavior that has been observed in all vertebrates tested. Tadpole eyes are small so the tail flip response was used as alternative measure, which requires a trained technician to record the subtle response. We developed an alternative behavior assay based on the fact that tadpoles prefer to swim on the white side of a tank when placed in a tank with both black and white sides. The assay presented here is an inexpensive, simple alternative that creates a response that is easily measured. The setup consists of a tripod, webcam and nested testing tanks, readily available in most Xenopus laboratories. This article includes a movie showing the behavior of tadpoles, before and after severing the optic nerve. In order to test the function of one eye, we also include representative results of a tadpole in which each eye underwent retinal axotomy on consecutive days. Future studies could develop an automated version of this assay for testing the vision of many tadpoles at once.
Collapse
Affiliation(s)
- Andrea S Viczian
- Ophthalmology Department, Center for Vision Research, SUNY Eye Institute, Upstate Medical University;
| | - Michael E Zuber
- Ophthalmology Department, Center for Vision Research, SUNY Eye Institute, Upstate Medical University
| |
Collapse
|
14
|
Giudetti G, Giannaccini M, Biasci D, Mariotti S, Degl'innocenti A, Perrotta M, Barsacchi G, Andreazzoli M. Characterization of the Rx1-dependent transcriptome during early retinal development. Dev Dyn 2014; 243:1352-61. [PMID: 24801179 DOI: 10.1002/dvdy.24145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/29/2014] [Accepted: 05/04/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The transcription factor Rx1, also known as Rax, controls key properties of retinal precursors including migration behavior, proliferation, and maintenance of multipotency. However, Rx1 effector genes are largely unknown. RESULTS To identify genes controlled by Rx1 in early retinal precursors, we compared the transcriptome of Xenopus embryos overexpressing Rx1 to that of embryos in which Rx1 was knocked-down. In particular, we selected 52 genes coherently regulated, i.e., actived in Rx1 gain of function and repressed in Rx1 loss of function experiments, or vice versa. RT-qPCR and in situ hybridization confirmed the trend of regulation predicted by microarray data for the selected genes. Most of the genes upregulated by Rx1 are coexpressed with this transcription factor, while downregulated genes are either not expressed or expressed at very low levels in the early developing retina. Putative direct Rx1 target genes, activated by GR-Rx1 in the absence of protein synthesis, include Ephrin B1 and Sh2d3c, an interactor of ephrinB1 receptor, which represent candidate novel effectors for the migration promoting activity of Rx1. CONCLUSIONS This study identifies previously undescribed Rx1 regulated genes mainly involved in transcription regulation, cell migration/adhesion, and cell proliferation that contribute to delineate the molecular mechanisms underlying Rx1 activities.
Collapse
Affiliation(s)
- Guido Giudetti
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Messina A, Incitti T, Bozza A, Bozzi Y, Casarosa S. Noggin Expression in the Adult Retina Suggests a Conserved Role during Vertebrate Evolution. J Histochem Cytochem 2014; 62:532-40. [PMID: 24752827 DOI: 10.1369/0022155414534691] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/10/2014] [Indexed: 01/11/2023] Open
Abstract
Vertebrates share common mechanisms in the control of development and in the maintenance of neural and retinal function. The secreted factor Noggin, a BMP inhibitor, plays a crucial role in neural induction during embryonic development. Moreover, we have shown its involvement in retinal differentiation of pluripotent cells. Here we show Noggin expression in the adult retina in three vertebrate species. Four Noggin genes are present in zebrafish (Danio rerio; ZbNog1, 2, 3, 5), three in frog (Xenopus laevis; XenNog1, 2 and 4), and one in mouse (Mus musculus; mNog). Quantitative RT-PCR experiments show the presence of ZbNog3 and ZbNog5 mRNAs, but not ZbNog1 and ZbNog2, in the adult zebrafish retina. All three genes are expressed in the frog retina, and mNog in the mouse. Immunohistochemistry data show that Noggin proteins are predominantly localized in the Golgi apparatus of photoreceptors and in the fibers of the outer plexiform layer. Lower expression levels are also found in inner plexiform layer fibers, in ganglion cells, in the ciliary marginal zone, and in retinal pigmented epithelium. Our results show that Noggin has a specific cellular and sub-cellular expression in the adult vertebrate retina, which is conserved during evolution. In addition to its established role during embryonic development, we postulate that Noggin also exerts a functional role in the adult retina.
Collapse
Affiliation(s)
- Andrea Messina
- Centre for Integrative Biology (CIBIO), University of Trento, Italy (AM,TI,AB,YB,SC)CNR Neuroscience Institute, Pisa, Italy (YB,SC)
| | - Tania Incitti
- Centre for Integrative Biology (CIBIO), University of Trento, Italy (AM,TI,AB,YB,SC)CNR Neuroscience Institute, Pisa, Italy (YB,SC)
| | - Angela Bozza
- Centre for Integrative Biology (CIBIO), University of Trento, Italy (AM,TI,AB,YB,SC)CNR Neuroscience Institute, Pisa, Italy (YB,SC)
| | - Yuri Bozzi
- Centre for Integrative Biology (CIBIO), University of Trento, Italy (AM,TI,AB,YB,SC)CNR Neuroscience Institute, Pisa, Italy (YB,SC)
| | - Simona Casarosa
- Centre for Integrative Biology (CIBIO), University of Trento, Italy (AM,TI,AB,YB,SC)CNR Neuroscience Institute, Pisa, Italy (YB,SC)
| |
Collapse
|
16
|
Mathieu ME, Faucheux C, Saucourt C, Soulet F, Gauthereau X, Fédou S, Trouillas M, Thézé N, Thiébaud P, Boeuf H. MRAS GTPase is a novel stemness marker that impacts mouse embryonic stem cell plasticity and Xenopus embryonic cell fate. Development 2013; 140:3311-22. [DOI: 10.1242/dev.091082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pluripotent mouse embryonic stem cells (mESCs), maintained in the presence of the leukemia inhibitory factor (LIF) cytokine, provide a powerful model with which to study pluripotency and differentiation programs. Extensive microarray studies on cultured cells have led to the identification of three LIF signatures. Here we focus on muscle ras oncogene homolog (MRAS), which is a small GTPase of the Ras family encoded within the Pluri gene cluster. To characterise the effects of Mras on cell pluripotency and differentiation, we used gain- and loss-of-function strategies in mESCs and in the Xenopus laevis embryo, in which Mras gene structure and protein sequence are conserved. We show that persistent knockdown of Mras in mESCs reduces expression of specific master genes and that MRAS plays a crucial role in the downregulation of OCT4 and NANOG protein levels upon differentiation. In Xenopus, we demonstrate the potential of Mras to modulate cell fate at early steps of development and during neurogenesis. Overexpression of Mras allows gastrula cells to retain responsiveness to fibroblast growth factor (FGF) and activin. Collectively, these results highlight novel conserved and pleiotropic effects of MRAS in stem cells and early steps of development.
Collapse
Affiliation(s)
- Marie-Emmanuelle Mathieu
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Corinne Faucheux
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Claire Saucourt
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Fabienne Soulet
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Xavier Gauthereau
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Sandrine Fédou
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Marina Trouillas
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Nadine Thézé
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Pierre Thiébaud
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| | - Hélène Boeuf
- University of Bordeaux, CIRID, UMR 5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33000 Bordeaux, France
| |
Collapse
|
17
|
The positional identity of mouse ES cell-generated neurons is affected by BMP signaling. Cell Mol Life Sci 2012; 70:1095-111. [PMID: 23069989 PMCID: PMC3578729 DOI: 10.1007/s00018-012-1182-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 01/10/2023]
Abstract
We investigated the effects of bone morphogenetic proteins (BMPs) in determining the positional identity of neurons generated in vitro from mouse embryonic stem cells (ESCs), an aspect that has been neglected thus far. Classical embryological studies in lower vertebrates indicate that BMPs inhibit the default fate of pluripotent embryonic cells, which is both neural and anterior. Moreover, mammalian ESCs generate neurons more efficiently when cultured in a minimal medium containing BMP inhibitors. In this paper, we show that mouse ESCs produce, secrete, and respond to BMPs during in vitro neural differentiation. After neuralization in a minimal medium, differentiated ESCs show a gene expression profile consistent with a midbrain identity, as evaluated by the analysis of a number of markers of anterior-posterior and dorsoventral identity. We found that BMPs endogenously produced during neural differentiation mainly act by inhibiting the expression of a telencephalic gene profile, which was revealed by the treatment with Noggin or with other BMP inhibitors. To better characterize the effect of BMPs on positional fate, we compared the global gene expression profiles of differentiated ESCs with those of embryonic forebrain, midbrain, and hindbrain. Both Noggin and retinoic acid (RA) support neuronal differentiation of ESCs, but they show different effects on their positional identity: whereas RA supports the typical gene expression profile of hindbrain neurons, Noggin induces a profile characteristic of dorsal telencephalic neurons. Our findings show that endogenously produced BMPs affect the positional identity of the neurons that ESCs spontaneously generate when differentiating in vitro in a minimal medium. The data also support the existence of an intrinsic program of neuronal differentiation with dorsal telencephalic identity. Our method of ESC neuralization allows for fast differentiation of neural cells via the same signals found during in vivo embryonic development and for the acquisition of cortical identity by the inhibition of BMP alone.
Collapse
|
18
|
Neural activity and branching of embryonic retinal ganglion cell dendrites. Mech Dev 2012; 129:125-35. [PMID: 22587886 DOI: 10.1016/j.mod.2012.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 04/24/2012] [Accepted: 05/07/2012] [Indexed: 11/23/2022]
Abstract
The shape of a neuron's dendritic arbor is critical for its function as it determines the number of inputs the neuron can receive and how those inputs are processed. During development, a neuron initiates primary dendrites that branch to form a simple arbor. Subsequently, growth occurs by a process that combines the extension and retraction of existing dendrites, and the addition of new branches. The loss and addition of the fine terminal branches of retinal ganglion cells (RGCs) is dependent on afferent inputs from its synaptic partners, the amacrine and bipolar cells. It is unknown, however, whether neural activity regulates the initiation of primary dendrites and their initial branching. To investigate this, Xenopus laevis RGCs developing in vivo were made to express either a delayed rectifier type voltage-gated potassium (KV) channel, Xenopus Kv1.1, or a human inward rectifying channel, Kir2.1, shown previously to modulate the electrical activity of Xenopus spinal cord neurons. Misexpression of either potassium channel increased the number of branch points and the total length of all the branches. As a result, the total dendritic arbor was bigger than for control green fluorescent protein-expressing RGCs and those ectopically expressing a highly related mutant non-functional Kv1.1 channel. Our data indicate that membrane excitability regulates the earliest differentiation of RGC dendritic arbors.
Collapse
|
19
|
Demontis GC, Aruta C, Comitato A, De Marzo A, Marigo V. Functional and molecular characterization of rod-like cells from retinal stem cells derived from the adult ciliary epithelium. PLoS One 2012; 7:e33338. [PMID: 22432014 PMCID: PMC3303820 DOI: 10.1371/journal.pone.0033338] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 02/14/2012] [Indexed: 11/18/2022] Open
Abstract
In vitro generation of photoreceptors from stem cells is of great interest for the development of regenerative medicine approaches for patients affected by retinal degeneration and for high throughput drug screens for these diseases. In this study, we show unprecedented high percentages of rod-fated cells from retinal stem cells of the adult ciliary epithelium. Molecular characterization of rod-like cells demonstrates that they lose ciliary epithelial characteristics but acquire photoreceptor features. Rod maturation was evaluated at two levels: gene expression and electrophysiological functionality. Here we present a strong correlation between phototransduction protein expression and functionality of the cells in vitro. We demonstrate that in vitro generated rod-like cells express cGMP-gated channels that are gated by endogenous cGMP. We also identified voltage-gated channels necessary for rod maturation and viability. This level of analysis for the first time provides evidence that adult retinal stem cells can generate highly homogeneous rod-fated cells.
Collapse
Affiliation(s)
- Gian Carlo Demontis
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Pisa, Italy
| | - Claudia Aruta
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonella Comitato
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna De Marzo
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Marigo
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- * E-mail:
| |
Collapse
|
20
|
Khokha MK. Xenopuswhite papers and resources: Folding functional genomics and genetics into the frog. Genesis 2012; 50:133-42. [DOI: 10.1002/dvg.22015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/13/2012] [Accepted: 01/15/2012] [Indexed: 02/04/2023]
|
21
|
Giannelli SG, Demontis GC, Pertile G, Rama P, Broccoli V. Adult Human Müller Glia Cells Are a Highly Efficient Source of Rod Photoreceptors. Stem Cells 2011; 29:344-56. [DOI: 10.1002/stem.579] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Borchers A, Pieler T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes (Basel) 2010; 1:413-26. [PMID: 24710095 PMCID: PMC3966229 DOI: 10.3390/genes1030413] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 10/21/2010] [Accepted: 11/05/2010] [Indexed: 11/16/2022] Open
Abstract
Xenopus embryos provide a rich source of pluripotent cells that can be differentiated into functional organs. Since the molecular principles of vertebrate organogenesis appear to be conserved between Xenopus and mammals, this system can provide useful guidelines for the directional manipulation of human embryonic stem cells. Pluripotent Xenopus cells can be easily isolated from the animal pole of blastula stage Xenopus embryos. These so called "animal cap" cells represent prospective ectodermal cells, but give rise to endodermal, mesodermal and neuro-ectodermal derivatives if treated with the appropriate factors. These factors include evolutionary conserved modulators of the key developmental signal transduction pathways that can be supplied either by mRNA microinjection or direct application of recombinant proteins. This relatively simple system has added to our understanding of pancreas, liver, kidney, eye and heart development. In particular, recent studies have used animal cap cells to generate ectopic eyes and hearts, setting the stage for future work aimed at programming pluripotent cells for regenerative medicine.
Collapse
Affiliation(s)
- Annette Borchers
- Department of Developmental Biochemistry, Center of Molecular Physiology of the Brain (CMPB), GZMB, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.
| | - Tomas Pieler
- Department of Developmental Biochemistry, Center of Molecular Physiology of the Brain (CMPB), GZMB, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.
| |
Collapse
|
23
|
Viczian AS, Zuber ME. Tissue determination using the animal cap transplant (ACT) assay in Xenopus laevis. J Vis Exp 2010:1932. [PMID: 20479704 DOI: 10.3791/1932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Many proteins play a dual role in embryonic development. Those that regulate cell fate determination in a specific tissue can also affect the development of a larger region of the embryo. This makes defining its role in a particular tissue difficult to analyze. For example, noggin overexpression in Xenopus laevis embryos causes the expansion of the entire anterior region, including the eye(1,2). From this result, it is not known if Noggin plays a direct role in eye determination or that by causing an expansion of neural tissue, Noggin indirectly affects eye formation. Having this complex phenotype makes studying its eye-specific role in cell fate determination difficult to analyze. We have developed an assay that overcomes this problem. Taking advantage of the pluripotent nature of the Xenopus laevis animal cap (3), we have developed an assay to test the ability of gene product(s), like noggin or the eye field transcription factors (EFTFs), to transform caps into particular tissue or cell types by transplanting this tissue onto the side of the embryo (4). While we have found either Noggin protein treatment or a collection of transcription factors can determine retinal cell fate in animal caps, this procedure could be used to identify gene product(s) involved in specifying other tissues as well.
Collapse
|
24
|
Abstract
Vertebrate eyes begin as a small patch of cells at the most anterior end of the early brain called the eye field. If these cells are removed from an amphibian embryo, the eyes do not form. If the eye field is transplanted to another location on the embryo or cultured in a dish, it forms eyes. These simple cut and paste experiments were performed at the beginning of the last century and helped to define the embryonic origin of the vertebrate eye. The genes necessary for eye field specification and eventual eye formation, by contrast, have only recently been identified. These genes and the molecular mechanisms regulating the initial formation of the Xenopus laevis eye field are the subjects of this review.
Collapse
Affiliation(s)
- Michael E Zuber
- Center for Vision Research, SUNY Eye Institute, Departments of Ophthalmology and Biochemistry & Molecular Biology, Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|